Vanishing of stable homology with respect to a semidualizing module

Li LIANG

Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 107 -127.

PDF (213KB)
Front. Math. China ›› 2018, Vol. 13 ›› Issue (1) : 107 -127. DOI: 10.1007/s11464-017-0661-0
RESEARCH ARTICLE
RESEARCH ARTICLE

Vanishing of stable homology with respect to a semidualizing module

Author information +
History +
PDF (213KB)

Abstract

We investigate stable homology of modules over a commutative noetherian ring R with respect to a semidualzing module C, and give some vanishing results that improve/extend the known results. As a consequence, we show that the balance of the theory forces C to be trivial and R to be Gorenstein.

Keywords

Stable homology / semidualizing module / proper resolution

Cite this article

Download citation ▾
Li LIANG. Vanishing of stable homology with respect to a semidualizing module. Front. Math. China, 2018, 13(1): 107-127 DOI:10.1007/s11464-017-0661-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avramov L L, Veliche O. Stable cohomology over local rings. Adv Math, 2007, 213: 93–139

[2]

Celikbas O, Christensen L W, Liang L, Piepmeyer G. Stable homology over associate rings. Trans Amer Math Soc, 2017, 369: 8061–8086

[3]

Celikbas O, Christensen L W, Liang L, Piepmeyer G. Complete homology over associate rings. Israel J Math (to appear)

[4]

Christensen L W, Frankild A, Holm H. On Gorenstein projective, injective and flat dimensions—A functorial description with applications. J Algebra, 2006, 302: 231–279

[5]

Emmanouil I. Mittag-Leffler condition and the vanishing of lim⁡1←. Topology, 1996, 35: 267–271

[6]

Emmanouil I, Manousaki P. On the stable homology of modules. J Pure Appl Algebra, 2017, 221: 2198–2219

[7]

Enochs E E, Jenda O M G. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter, 2000

[8]

Foxby H B. Gorenstein modules and related modules. Math Scand, 1972, 31: 267–284

[9]

Goichot F. Homologie de Tate-Vogel équivariante. J Pure Appl Algebra, 1992, 82: 39–64

[10]

Golod E S. G-dimension and generalized perfect ideals. Trudy Matematicheskogo Instituta Imeni VA Steklova, 1984, 165: 62–66

[11]

Grothendieck A, Dieudonné J. Éléments de Géométrie Algébrique, III. Publ Math IHES, No 11. Paris: IHES, 1961

[12]

Holm H, White D. Foxby equivalence over associative rings. J Math Kyoto Univ, 2007, 47: 781–808

[13]

Nucinkis B E A. Complete cohomology for arbitrary rings using injectives. J Pure Appl Algebra, 1998, 131: 297–318

[14]

Roos J E. Sur les foncteurs dérivés de lim⁡←. Applications, C R Acad Sci Paris, 1961, 252: 3702–3704

[15]

Salimi M, Sather-Wagstaff S, Tavasoli E, Yassemi S. Relative Tor functors with respect to a semidualizing module. Algebr Represent Theory, 2014, 17: 103–120

[16]

Sather-Wagstaff S, Sharif T, White D. AB-contexts and stability for Gorenstein flat modules with respect to semidualizing modules. Algebr Represent Theory, 2011, 14: 403–428

[17]

Sather-Wagstaff S, Yassemi S. Modules of finite homological dimension with respect to a semidualizing module. Arch Math, 2009, 93: 111–121

[18]

Takahashi R, White D. Homological aspects of semidualizing modules. Math Scand, 2010, 106: 5–22

[19]

Vasconcelos W V. Divisor Theory in Module Categories. North-Holland Math Stud, Vol 14. Amsterdam: North-Holland Publishing Co, 1974

[20]

Yeh Z Z. Higher Inverse Limits and Homology Theories. Thesis, Princeton Univ, 1959

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature

AI Summary AI Mindmap
PDF (213KB)

585

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/