RESEARCH ARTICLE

Linear homotopy method for computing generalized tensor eigenpairs

  • Liping CHEN 1 ,
  • Lixing HAN , 2 ,
  • Liangmin ZHOU 1
Expand
  • 1. Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
  • 2. Department of Mathematics, University of Michigan-Flint, Flint, MI 48502, USA

Received date: 24 Jul 2015

Accepted date: 21 Sep 2017

Published date: 27 Nov 2017

Copyright

2017 Higher Education Press and Springer-Verlag GmbH Germany

Abstract

Let m, m, n be positive integers such that mm. Let A be an mth order n-dimensional tensor, and let B be an mth order n-dimensional tensor. λ ∈ is called a B-eigenvalue of A if Axm1=λBxm1 and Bxm=1 for some xn\{0}. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated B-eigenpairs. Moreover, it is easy to implement. Numerical results are provided to show the efficiency of the proposed method.

Cite this article

Liping CHEN , Lixing HAN , Liangmin ZHOU . Linear homotopy method for computing generalized tensor eigenpairs[J]. Frontiers of Mathematics in China, 2017 , 12(6) : 1303 -1317 . DOI: 10.1007/s11464-017-0662-z

1
BatesD L, HauensteinJ D, SommeseA J, WamplerC W. Numerically Solving Polynomial Systems with Bertini.Philadelphia: SIAM,2013

2
CartwrightD, SturmfelsB. The number of eigenvalues of a tensor.Linear Algebra Appl, 2013, 438: 942–952

DOI

3
ChangK C, PearsonK, ZhangT. On eigenvalues of real symmetric tensors.J Math Anal Appl, 2009, 350: 416–422

DOI

4
ChenL, HanL, ZhouL. Computing tensor eigenvalues via homotopy methods.SIAM J Matrix Anal Appl, 2016, 37(1): 290–319

DOI

5
CuiC, DaiY-H, NieJ. All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl,2014, 35: 1582–1601

DOI

6
HuberB, SturmfelsB. A polyhedral method for solving sparse polynomial systems. Math Comp, 1995, 64: 1541–1555

DOI

7
LiT Y. Solving polynomial systems by the homotopy continuation method.In: Ciarlet P G, ed. Handbook of Numerial Analysis, XI. Amsterdam: North-Holland, 2003, 209–304

DOI

8
LimL-H. Singular values and eigenvalues of tensors: a variational approach.In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), Vol 1. 2005, 129–132

9
MorganA P. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems.Philadelphia: SIAM, 2009

DOI

10
QiL. Eigenvalues of a real supersymmetric tensor.J Symbolic Comput, 2005, 40: 1302–1324

DOI

11
QiL, WangY, WuE X. D-eigenvalues of diffusion kurtosis tensors.J Comput Appl Math, 2008, 221: 150–157

DOI

12
SommeseA J, WamplerW W. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science.Singapore: World Scientific Pub Co Inc, 2005

DOI

13
WrightA H. Finding all solutions to a system of a polynomial equations.Math Comp, 1985, 44: 125–133

DOI

14
ZengZ, LiT Y. NACLab, A Matlab toolbox for numerical algebraic computation.ACM Commun Comput Algebra, 2013, 47: 170–173

DOI

Outlines

/