Frontiers of Mathematics in China >
Linear homotopy method for computing generalized tensor eigenpairs
Received date: 24 Jul 2015
Accepted date: 21 Sep 2017
Published date: 27 Nov 2017
Copyright
Let m, , n be positive integers such that . Let be an mth order n-dimensional tensor, and let be an th order n-dimensional tensor. λ ∈ is called a -eigenvalue of if and for some x ∈. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated -eigenpairs. Moreover, it is easy to implement. Numerical results are provided to show the efficiency of the proposed method.
Key words: Tensors; generalized eigenpairs; polynomial systems; linear homotopy
Liping CHEN , Lixing HAN , Liangmin ZHOU . Linear homotopy method for computing generalized tensor eigenpairs[J]. Frontiers of Mathematics in China, 2017 , 12(6) : 1303 -1317 . DOI: 10.1007/s11464-017-0662-z
1 |
BatesD L, HauensteinJ D, SommeseA J, WamplerC W. Numerically Solving Polynomial Systems with Bertini.Philadelphia: SIAM,2013
|
2 |
CartwrightD, SturmfelsB. The number of eigenvalues of a tensor.Linear Algebra Appl, 2013, 438: 942–952
|
3 |
ChangK C, PearsonK, ZhangT. On eigenvalues of real symmetric tensors.J Math Anal Appl, 2009, 350: 416–422
|
4 |
ChenL, HanL, ZhouL. Computing tensor eigenvalues via homotopy methods.SIAM J Matrix Anal Appl, 2016, 37(1): 290–319
|
5 |
CuiC, DaiY-H, NieJ. All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl,2014, 35: 1582–1601
|
6 |
HuberB, SturmfelsB. A polyhedral method for solving sparse polynomial systems. Math Comp, 1995, 64: 1541–1555
|
7 |
LiT Y. Solving polynomial systems by the homotopy continuation method.In: Ciarlet P G, ed. Handbook of Numerial Analysis, XI. Amsterdam: North-Holland, 2003, 209–304
|
8 |
LimL-H. Singular values and eigenvalues of tensors: a variational approach.In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), Vol 1. 2005, 129–132
|
9 |
MorganA P. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems.Philadelphia: SIAM, 2009
|
10 |
QiL. Eigenvalues of a real supersymmetric tensor.J Symbolic Comput, 2005, 40: 1302–1324
|
11 |
QiL, WangY, WuE X. D-eigenvalues of diffusion kurtosis tensors.J Comput Appl Math, 2008, 221: 150–157
|
12 |
SommeseA J, WamplerW W. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science.Singapore: World Scientific Pub Co Inc, 2005
|
13 |
WrightA H. Finding all solutions to a system of a polynomial equations.Math Comp, 1985, 44: 125–133
|
14 |
ZengZ, LiT Y. NACLab, A Matlab toolbox for numerical algebraic computation.ACM Commun Comput Algebra, 2013, 47: 170–173
|
/
〈 | 〉 |