Linear homotopy method for computing generalized tensor eigenpairs

Liping CHEN , Lixing HAN , Liangmin ZHOU

Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1303 -1317.

PDF (184KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1303 -1317. DOI: 10.1007/s11464-017-0662-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Linear homotopy method for computing generalized tensor eigenpairs

Author information +
History +
PDF (184KB)

Abstract

Let m, m, n be positive integers such that mm. Let A be an mth order n-dimensional tensor, and let B be an mth order n-dimensional tensor. λ ∈ is called a B-eigenvalue of A if Axm1=λBxm1 and Bxm=1 for some xn\{0}. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated B-eigenpairs. Moreover, it is easy to implement. Numerical results are provided to show the efficiency of the proposed method.

Keywords

Tensors / generalized eigenpairs / polynomial systems / linear homotopy

Cite this article

Download citation ▾
Liping CHEN, Lixing HAN, Liangmin ZHOU. Linear homotopy method for computing generalized tensor eigenpairs. Front. Math. China, 2017, 12(6): 1303-1317 DOI:10.1007/s11464-017-0662-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BatesD L, HauensteinJ D, SommeseA J, WamplerC W. Numerically Solving Polynomial Systems with Bertini.Philadelphia: SIAM,2013

[2]

CartwrightD, SturmfelsB. The number of eigenvalues of a tensor.Linear Algebra Appl, 2013, 438: 942–952

[3]

ChangK C, PearsonK, ZhangT. On eigenvalues of real symmetric tensors.J Math Anal Appl, 2009, 350: 416–422

[4]

ChenL, HanL, ZhouL. Computing tensor eigenvalues via homotopy methods.SIAM J Matrix Anal Appl, 2016, 37(1): 290–319

[5]

CuiC, DaiY-H, NieJ. All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl,2014, 35: 1582–1601

[6]

HuberB, SturmfelsB. A polyhedral method for solving sparse polynomial systems. Math Comp, 1995, 64: 1541–1555

[7]

LiT Y. Solving polynomial systems by the homotopy continuation method.In: Ciarlet P G, ed. Handbook of Numerial Analysis, XI. Amsterdam: North-Holland, 2003, 209–304

[8]

LimL-H. Singular values and eigenvalues of tensors: a variational approach.In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), Vol 1. 2005, 129–132

[9]

MorganA P. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems.Philadelphia: SIAM, 2009

[10]

QiL. Eigenvalues of a real supersymmetric tensor.J Symbolic Comput, 2005, 40: 1302–1324

[11]

QiL, WangY, WuE X. D-eigenvalues of diffusion kurtosis tensors.J Comput Appl Math, 2008, 221: 150–157

[12]

SommeseA J, WamplerW W. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science.Singapore: World Scientific Pub Co Inc, 2005

[13]

WrightA H. Finding all solutions to a system of a polynomial equations.Math Comp, 1985, 44: 125–133

[14]

ZengZ, LiT Y. NACLab, A Matlab toolbox for numerical algebraic computation.ACM Commun Comput Algebra, 2013, 47: 170–173

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (184KB)

1202

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/