Linear homotopy method for computing generalized tensor eigenpairs

Liping CHEN, Lixing HAN, Liangmin ZHOU

PDF(184 KB)
PDF(184 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (6) : 1303-1317. DOI: 10.1007/s11464-017-0662-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Linear homotopy method for computing generalized tensor eigenpairs

Author information +
History +

Abstract

Let m, m, n be positive integers such that mm. Let A be an mth order n-dimensional tensor, and let B be an mth order n-dimensional tensor. λ ∈ is called a B-eigenvalue of A if Axm1=λBxm1 and Bxm=1 for some xn\{0}. In this paper, we propose a linear homotopy method for solving this eigenproblem. We prove that the method finds all isolated B-eigenpairs. Moreover, it is easy to implement. Numerical results are provided to show the efficiency of the proposed method.

Keywords

Tensors / generalized eigenpairs / polynomial systems / linear homotopy

Cite this article

Download citation ▾
Liping CHEN, Lixing HAN, Liangmin ZHOU. Linear homotopy method for computing generalized tensor eigenpairs. Front. Math. China, 2017, 12(6): 1303‒1317 https://doi.org/10.1007/s11464-017-0662-z

References

[1]
BatesD L, HauensteinJ D, SommeseA J, WamplerC W. Numerically Solving Polynomial Systems with Bertini.Philadelphia: SIAM,2013
[2]
CartwrightD, SturmfelsB. The number of eigenvalues of a tensor.Linear Algebra Appl, 2013, 438: 942–952
CrossRef Google scholar
[3]
ChangK C, PearsonK, ZhangT. On eigenvalues of real symmetric tensors.J Math Anal Appl, 2009, 350: 416–422
CrossRef Google scholar
[4]
ChenL, HanL, ZhouL. Computing tensor eigenvalues via homotopy methods.SIAM J Matrix Anal Appl, 2016, 37(1): 290–319
CrossRef Google scholar
[5]
CuiC, DaiY-H, NieJ. All real eigenvalues of symmetric tensors. SIAM J Matrix Anal Appl,2014, 35: 1582–1601
CrossRef Google scholar
[6]
HuberB, SturmfelsB. A polyhedral method for solving sparse polynomial systems. Math Comp, 1995, 64: 1541–1555
CrossRef Google scholar
[7]
LiT Y. Solving polynomial systems by the homotopy continuation method.In: Ciarlet P G, ed. Handbook of Numerial Analysis, XI. Amsterdam: North-Holland, 2003, 209–304
CrossRef Google scholar
[8]
LimL-H. Singular values and eigenvalues of tensors: a variational approach.In: Proceedings of the IEEE InternationalWorkshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP’05), Vol 1. 2005, 129–132
[9]
MorganA P. Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems.Philadelphia: SIAM, 2009
CrossRef Google scholar
[10]
QiL. Eigenvalues of a real supersymmetric tensor.J Symbolic Comput, 2005, 40: 1302–1324
CrossRef Google scholar
[11]
QiL, WangY, WuE X. D-eigenvalues of diffusion kurtosis tensors.J Comput Appl Math, 2008, 221: 150–157
CrossRef Google scholar
[12]
SommeseA J, WamplerW W. The Numerical Solution of Systems of Polynomials Arising in Engineering and Science.Singapore: World Scientific Pub Co Inc, 2005
CrossRef Google scholar
[13]
WrightA H. Finding all solutions to a system of a polynomial equations.Math Comp, 1985, 44: 125–133
CrossRef Google scholar
[14]
ZengZ, LiT Y. NACLab, A Matlab toolbox for numerical algebraic computation.ACM Commun Comput Algebra, 2013, 47: 170–173
CrossRef Google scholar

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(184 KB)

Accesses

Citations

Detail

Sections
Recommended

/