RESEARCH ARTICLE

Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications

  • Hui ZHANG ,
  • Chunyan QI ,
  • Baode LI
Expand
  • College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China

Received date: 20 Jan 2016

Accepted date: 25 Apr 2016

Published date: 06 Jul 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations {Ak : k ∈ Z}, where A is a real n × n matrix with all its eigenvalues λ satisfy |λ|>1. The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let ϕ: Rn×[0,∞) →[0,∞) be an anisotropic p-growth function with p ∈ (0, 1]. The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type HAφ,(n) and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to HAφ,(n) and the boundedness of the anisotropic Calderón-Zygmund operator from HAφ,(n) to Lφ,(n). It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of HAφ,(n) and the interpolation theorem.

Cite this article

Hui ZHANG , Chunyan QI , Baode LI . Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications[J]. Frontiers of Mathematics in China, 2017 , 12(4) : 993 -1022 . DOI: 10.1007/s11464-016-0546-7

1
BonamiA, FeutoJ, GrellierS. Endpoint for the div-curl lemma in Hardy spaces.Publ Mat, 2010, 54: 341–358

DOI

2
BonamiA, GrellierS, KyL D. Paraproducts and products of functions in BMOand H1 through wavelets.J Math Pure Appl, 2012, 97: 230–241

DOI

3
BonamiA, IwaniecT, JonesP, ZinsmeisterM. On the product of functions in BMOand H1.Ann Inst Fourier (Grenoble), 2007, 57: 1405–1439

DOI

4
BownikM. Anisotropic Hardy Spaces and Wavelets.Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc,2003

5
BownikM. On a problem of Daubechies.Constr Approx, 2003, 19: 179–190

DOI

6
BownikM, HoK P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces.Trans Amer Math Soc, 2006, 358: 1469–1510

DOI

7
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators.Indiana Univ Math J, 2008, 57: 3065–3100

DOI

8
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators.Math Nachr, 2010, 283: 392–442

DOI

9
CoifmanR R, WeissG. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes.Berlin-New York: Springer-Verlag, 1971

DOI

10
DieningL. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull Sci Math, 2005, 129: 657–700

DOI

11
DingY, LanS H. Anisotropic weak Hardy spaces and interpolation theorems.Sci China Math, 2008, 51: 1690–1704

DOI

12
DingY, LanS H. Anisotropic Hardy estimates for multilinear operators.Adv Math, 2009, 38: 168–184

13
FeffermanC, RiviereN M, SagherY. Interpolation between Hp spaces: the real method.Trans Amer Math Soc, 1974, 191: 75–81

14
FeffermanR, SoriaF. The spaces weak H1.Studia Math, 1987, 85: 1–16

15
Garćıa-CuervaJ, MartellJ M. Wavelet characterization of weighted spaces.J Geom Anal,2001, 11: 241–264

DOI

16
JohnsonR, NeugebauerC J. Homeomorphisms preserving Ap.Rev Mat Iberoam, 1987, 3: 249–273

DOI

17
KyL D. Bilinear decompositions and commutators of singular integral operators.Trans Amer Math Soc, 2013, 365: 2931–2958

DOI

18
KyL D. Bilinear decompositions for the product space H1L× BMOL.Math Nachr, 2014, 287: 1288–1297

DOI

19
KyL D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators.Integral Equations Operator Theory, 2014, 78: 115–150

DOI

20
LiB D, YangD C, YuanW. Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators.The ScientificWorld Journal, 2014, Article ID 306214, 19pp, Doi: 10.1155/2014/306214

DOI

21
LiangY Y, HuangJ Z, YangD C. New real-variable characterizations of Musielak-Orlicz Hardy spaces.J Math Anal Appl, 2012, 395: 413–428

DOI

22
LiuH P. The Weak Hp Spaces on Homogeneous Groups.Berlin-New York: Springer-Verlag, 1991

23
MusielakJ. Orlicz Spaces and Modular Spaces.Berlin-New York: Springer-Verlag, 1983

DOI

24
QiC Y, ZhangH, LiB D. New real-variable characterizations of anisortropic weak Hardy spaces of Musielak-Orlicz.Rocky Mountain J Math (to appear)

25
QuekT S, YangD C. Calderón-Zygmund-type operators on weighted weak Hardy spaces over ℝn.Acta Math Sin (Engl Ser), 2000, 16: 141–160

DOI

26
SteinE M, TaiblesonM, WeissG. Weak type estimates for maximal operators on certain Hp classes.Rend Circ Mat Palermo, 1981, 1: 81–97

27
StrömbergJ O, TorchinskyA. Weighted Hardy Spaces.Berlin-New York: Springer-Verlag, 1989

DOI

28
TriebelH. Theory of Function Spaces.Basel: Birkhäuser Verlag, 1983

DOI

Outlines

/