Frontiers of Mathematics in China >
Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
Received date: 20 Jan 2016
Accepted date: 25 Apr 2016
Published date: 06 Jul 2017
Copyright
Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations {Ak : k ∈ Z}, where A is a real n × n matrix with all its eigenvalues λ satisfy |λ|>1. The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let ϕ: Rn×[0,∞) →[0,∞) be an anisotropic p-growth function with p ∈ (0, 1]. The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to and the boundedness of the anisotropic Calderón-Zygmund operator from to . It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of and the interpolation theorem.
Hui ZHANG , Chunyan QI , Baode LI . Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications[J]. Frontiers of Mathematics in China, 2017 , 12(4) : 993 -1022 . DOI: 10.1007/s11464-016-0546-7
1 |
BonamiA, FeutoJ, GrellierS. Endpoint for the div-curl lemma in Hardy spaces.Publ Mat, 2010, 54: 341–358
|
2 |
BonamiA, GrellierS, KyL D. Paraproducts and products of functions in BMOand H1 through wavelets.J Math Pure Appl, 2012, 97: 230–241
|
3 |
BonamiA, IwaniecT, JonesP, ZinsmeisterM. On the product of functions in BMOand H1.Ann Inst Fourier (Grenoble), 2007, 57: 1405–1439
|
4 |
BownikM. Anisotropic Hardy Spaces and Wavelets.Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc,2003
|
5 |
BownikM. On a problem of Daubechies.Constr Approx, 2003, 19: 179–190
|
6 |
BownikM, HoK P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces.Trans Amer Math Soc, 2006, 358: 1469–1510
|
7 |
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators.Indiana Univ Math J, 2008, 57: 3065–3100
|
8 |
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators.Math Nachr, 2010, 283: 392–442
|
9 |
CoifmanR R, WeissG. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes.Berlin-New York: Springer-Verlag, 1971
|
10 |
DieningL. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull Sci Math, 2005, 129: 657–700
|
11 |
DingY, LanS H. Anisotropic weak Hardy spaces and interpolation theorems.Sci China Math, 2008, 51: 1690–1704
|
12 |
DingY, LanS H. Anisotropic Hardy estimates for multilinear operators.Adv Math, 2009, 38: 168–184
|
13 |
FeffermanC, RiviereN M, SagherY. Interpolation between Hp spaces: the real method.Trans Amer Math Soc, 1974, 191: 75–81
|
14 |
FeffermanR, SoriaF. The spaces weak H1.Studia Math, 1987, 85: 1–16
|
15 |
Garćıa-CuervaJ, MartellJ M. Wavelet characterization of weighted spaces.J Geom Anal,2001, 11: 241–264
|
16 |
JohnsonR, NeugebauerC J. Homeomorphisms preserving Ap.Rev Mat Iberoam, 1987, 3: 249–273
|
17 |
KyL D. Bilinear decompositions and commutators of singular integral operators.Trans Amer Math Soc, 2013, 365: 2931–2958
|
18 |
KyL D. Bilinear decompositions for the product space H1L× BMOL.Math Nachr, 2014, 287: 1288–1297
|
19 |
KyL D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators.Integral Equations Operator Theory, 2014, 78: 115–150
|
20 |
LiB D, YangD C, YuanW. Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators.The ScientificWorld Journal, 2014, Article ID 306214, 19pp, Doi: 10.1155/2014/306214
|
21 |
LiangY Y, HuangJ Z, YangD C. New real-variable characterizations of Musielak-Orlicz Hardy spaces.J Math Anal Appl, 2012, 395: 413–428
|
22 |
LiuH P. The Weak Hp Spaces on Homogeneous Groups.Berlin-New York: Springer-Verlag, 1991
|
23 |
MusielakJ. Orlicz Spaces and Modular Spaces.Berlin-New York: Springer-Verlag, 1983
|
24 |
QiC Y, ZhangH, LiB D. New real-variable characterizations of anisortropic weak Hardy spaces of Musielak-Orlicz.Rocky Mountain J Math (to appear)
|
25 |
QuekT S, YangD C. Calderón-Zygmund-type operators on weighted weak Hardy spaces over ℝn.Acta Math Sin (Engl Ser), 2000, 16: 141–160
|
26 |
SteinE M, TaiblesonM, WeissG. Weak type estimates for maximal operators on certain Hp classes.Rend Circ Mat Palermo, 1981, 1: 81–97
|
27 |
StrömbergJ O, TorchinskyA. Weighted Hardy Spaces.Berlin-New York: Springer-Verlag, 1989
|
28 |
TriebelH. Theory of Function Spaces.Basel: Birkhäuser Verlag, 1983
|
/
〈 | 〉 |