Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
Hui ZHANG, Chunyan QI, Baode LI
Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications
Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations {Ak : k ∈ Z}, where A is a real n × n matrix with all its eigenvalues λ satisfy |λ|>1. The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let ϕ: Rn×[0,∞) →[0,∞) be an anisotropic p-growth function with p ∈ (0, 1]. The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to and the boundedness of the anisotropic Calderón-Zygmund operator from to . It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of and the interpolation theorem.
Expansive dilation / Muckenhoupt weight / weak Hardy space / Musielak-Orlicz function / atomic decomposition / Calderón-Zygmund operator
[1] |
BonamiA, FeutoJ, GrellierS. Endpoint for the div-curl lemma in Hardy spaces.Publ Mat, 2010, 54: 341–358
CrossRef
Google scholar
|
[2] |
BonamiA, GrellierS, KyL D. Paraproducts and products of functions in BMOand H1 through wavelets.J Math Pure Appl, 2012, 97: 230–241
CrossRef
Google scholar
|
[3] |
BonamiA, IwaniecT, JonesP, ZinsmeisterM. On the product of functions in BMOand H1.Ann Inst Fourier (Grenoble), 2007, 57: 1405–1439
CrossRef
Google scholar
|
[4] |
BownikM. Anisotropic Hardy Spaces and Wavelets.Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc,2003
|
[5] |
BownikM. On a problem of Daubechies.Constr Approx, 2003, 19: 179–190
CrossRef
Google scholar
|
[6] |
BownikM, HoK P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces.Trans Amer Math Soc, 2006, 358: 1469–1510
CrossRef
Google scholar
|
[7] |
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators.Indiana Univ Math J, 2008, 57: 3065–3100
CrossRef
Google scholar
|
[8] |
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators.Math Nachr, 2010, 283: 392–442
CrossRef
Google scholar
|
[9] |
CoifmanR R, WeissG. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes.Berlin-New York: Springer-Verlag, 1971
CrossRef
Google scholar
|
[10] |
DieningL. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull Sci Math, 2005, 129: 657–700
CrossRef
Google scholar
|
[11] |
DingY, LanS H. Anisotropic weak Hardy spaces and interpolation theorems.Sci China Math, 2008, 51: 1690–1704
CrossRef
Google scholar
|
[12] |
DingY, LanS H. Anisotropic Hardy estimates for multilinear operators.Adv Math, 2009, 38: 168–184
|
[13] |
FeffermanC, RiviereN M, SagherY. Interpolation between Hp spaces: the real method.Trans Amer Math Soc, 1974, 191: 75–81
|
[14] |
FeffermanR, SoriaF. The spaces weak H1.Studia Math, 1987, 85: 1–16
|
[15] |
Garćıa-CuervaJ, MartellJ M. Wavelet characterization of weighted spaces.J Geom Anal,2001, 11: 241–264
CrossRef
Google scholar
|
[16] |
JohnsonR, NeugebauerC J. Homeomorphisms preserving Ap.Rev Mat Iberoam, 1987, 3: 249–273
CrossRef
Google scholar
|
[17] |
KyL D. Bilinear decompositions and commutators of singular integral operators.Trans Amer Math Soc, 2013, 365: 2931–2958
CrossRef
Google scholar
|
[18] |
KyL D. Bilinear decompositions for the product space H1L× BMOL.Math Nachr, 2014, 287: 1288–1297
CrossRef
Google scholar
|
[19] |
KyL D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators.Integral Equations Operator Theory, 2014, 78: 115–150
CrossRef
Google scholar
|
[20] |
LiB D, YangD C, YuanW. Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators.The ScientificWorld Journal, 2014, Article ID 306214, 19pp, Doi: 10.1155/2014/306214
CrossRef
Google scholar
|
[21] |
LiangY Y, HuangJ Z, YangD C. New real-variable characterizations of Musielak-Orlicz Hardy spaces.J Math Anal Appl, 2012, 395: 413–428
CrossRef
Google scholar
|
[22] |
LiuH P. The Weak Hp Spaces on Homogeneous Groups.Berlin-New York: Springer-Verlag, 1991
|
[23] |
MusielakJ. Orlicz Spaces and Modular Spaces.Berlin-New York: Springer-Verlag, 1983
CrossRef
Google scholar
|
[24] |
QiC Y, ZhangH, LiB D. New real-variable characterizations of anisortropic weak Hardy spaces of Musielak-Orlicz.Rocky Mountain J Math (to appear)
|
[25] |
QuekT S, YangD C. Calderón-Zygmund-type operators on weighted weak Hardy spaces over ℝn.Acta Math Sin (Engl Ser), 2000, 16: 141–160
CrossRef
Google scholar
|
[26] |
SteinE M, TaiblesonM, WeissG. Weak type estimates for maximal operators on certain Hp classes.Rend Circ Mat Palermo, 1981, 1: 81–97
|
[27] |
StrömbergJ O, TorchinskyA. Weighted Hardy Spaces.Berlin-New York: Springer-Verlag, 1989
CrossRef
Google scholar
|
[28] |
TriebelH. Theory of Function Spaces.Basel: Birkhäuser Verlag, 1983
CrossRef
Google scholar
|
/
〈 | 〉 |