Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications

Hui ZHANG, Chunyan QI, Baode LI

PDF(295 KB)
PDF(295 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 993-1022. DOI: 10.1007/s11464-016-0546-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications

Author information +
History +

Abstract

Anisotropy is a common attribute of the nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations {Ak : k ∈ Z}, where A is a real n × n matrix with all its eigenvalues λ satisfy |λ|>1. The aim of this article is to study a general class of anisotropic function spaces, some properties and applications of these spaces. Let ϕ: Rn×[0,∞) →[0,∞) be an anisotropic p-growth function with p ∈ (0, 1]. The purpose of this article is to find an appropriate general space which includes weak Hardy space of Fefferman and Soria, weighted weak Hardy space of Quek and Yang, and anisotropic weak Hardy space of Ding and Lan. For this reason, we introduce the anisotropic weak Hardy space of Musielak-Orlicz type HAφ,(n) and obtain its atomic characterization. As applications, we further obtain an interpolation theorem adapted to HAφ,(n) and the boundedness of the anisotropic Calderón-Zygmund operator from HAφ,(n) to Lφ,(n). It is worth mentioning that the superposition principle adapted to the weak Musielak-Orlicz function space, which is an extension of a result of E. M. Stein, M. Taibleson and G. Weiss, plays an important role in the proofs of the atomic decomposition of HAφ,(n) and the interpolation theorem.

Keywords

Expansive dilation / Muckenhoupt weight / weak Hardy space / Musielak-Orlicz function / atomic decomposition / Calderón-Zygmund operator

Cite this article

Download citation ▾
Hui ZHANG, Chunyan QI, Baode LI. Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications. Front. Math. China, 2017, 12(4): 993‒1022 https://doi.org/10.1007/s11464-016-0546-7

References

[1]
BonamiA, FeutoJ, GrellierS. Endpoint for the div-curl lemma in Hardy spaces.Publ Mat, 2010, 54: 341–358
CrossRef Google scholar
[2]
BonamiA, GrellierS, KyL D. Paraproducts and products of functions in BMOand H1 through wavelets.J Math Pure Appl, 2012, 97: 230–241
CrossRef Google scholar
[3]
BonamiA, IwaniecT, JonesP, ZinsmeisterM. On the product of functions in BMOand H1.Ann Inst Fourier (Grenoble), 2007, 57: 1405–1439
CrossRef Google scholar
[4]
BownikM. Anisotropic Hardy Spaces and Wavelets.Mem Amer Math Soc, Vol 164, No 781. Providence: Amer Math Soc,2003
[5]
BownikM. On a problem of Daubechies.Constr Approx, 2003, 19: 179–190
CrossRef Google scholar
[6]
BownikM, HoK P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces.Trans Amer Math Soc, 2006, 358: 1469–1510
CrossRef Google scholar
[7]
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators.Indiana Univ Math J, 2008, 57: 3065–3100
CrossRef Google scholar
[8]
BownikM, LiB D, YangD C, ZhouY. Weighted anisotropic product Hardy spaces and boundedness of sublinear operators.Math Nachr, 2010, 283: 392–442
CrossRef Google scholar
[9]
CoifmanR R, WeissG. Analyse Harmonique Non-commutative sur Certains Espaces Homogènes.Berlin-New York: Springer-Verlag, 1971
CrossRef Google scholar
[10]
DieningL. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.Bull Sci Math, 2005, 129: 657–700
CrossRef Google scholar
[11]
DingY, LanS H. Anisotropic weak Hardy spaces and interpolation theorems.Sci China Math, 2008, 51: 1690–1704
CrossRef Google scholar
[12]
DingY, LanS H. Anisotropic Hardy estimates for multilinear operators.Adv Math, 2009, 38: 168–184
[13]
FeffermanC, RiviereN M, SagherY. Interpolation between Hp spaces: the real method.Trans Amer Math Soc, 1974, 191: 75–81
[14]
FeffermanR, SoriaF. The spaces weak H1.Studia Math, 1987, 85: 1–16
[15]
Garćıa-CuervaJ, MartellJ M. Wavelet characterization of weighted spaces.J Geom Anal,2001, 11: 241–264
CrossRef Google scholar
[16]
JohnsonR, NeugebauerC J. Homeomorphisms preserving Ap.Rev Mat Iberoam, 1987, 3: 249–273
CrossRef Google scholar
[17]
KyL D. Bilinear decompositions and commutators of singular integral operators.Trans Amer Math Soc, 2013, 365: 2931–2958
CrossRef Google scholar
[18]
KyL D. Bilinear decompositions for the product space H1L× BMOL.Math Nachr, 2014, 287: 1288–1297
CrossRef Google scholar
[19]
KyL D. New Hardy spaces of Musielak-Orlicz type and boundedness of sublinear operators.Integral Equations Operator Theory, 2014, 78: 115–150
CrossRef Google scholar
[20]
LiB D, YangD C, YuanW. Anisotropic Hardy spaces of Musielak-Orlicz type with applications to boundedness of sublinear operators.The ScientificWorld Journal, 2014, Article ID 306214, 19pp, Doi: 10.1155/2014/306214
CrossRef Google scholar
[21]
LiangY Y, HuangJ Z, YangD C. New real-variable characterizations of Musielak-Orlicz Hardy spaces.J Math Anal Appl, 2012, 395: 413–428
CrossRef Google scholar
[22]
LiuH P. The Weak Hp Spaces on Homogeneous Groups.Berlin-New York: Springer-Verlag, 1991
[23]
MusielakJ. Orlicz Spaces and Modular Spaces.Berlin-New York: Springer-Verlag, 1983
CrossRef Google scholar
[24]
QiC Y, ZhangH, LiB D. New real-variable characterizations of anisortropic weak Hardy spaces of Musielak-Orlicz.Rocky Mountain J Math (to appear)
[25]
QuekT S, YangD C. Calderón-Zygmund-type operators on weighted weak Hardy spaces over ℝn.Acta Math Sin (Engl Ser), 2000, 16: 141–160
CrossRef Google scholar
[26]
SteinE M, TaiblesonM, WeissG. Weak type estimates for maximal operators on certain Hp classes.Rend Circ Mat Palermo, 1981, 1: 81–97
[27]
StrömbergJ O, TorchinskyA. Weighted Hardy Spaces.Berlin-New York: Springer-Verlag, 1989
CrossRef Google scholar
[28]
TriebelH. Theory of Function Spaces.Basel: Birkhäuser Verlag, 1983
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(295 KB)

Accesses

Citations

Detail

Sections
Recommended

/