RESEARCH ARTICLE

Ideal counting function in cubic fields

  • Zhishan YANG
Expand
  • School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

Received date: 03 Feb 2016

Accepted date: 07 Jul 2016

Published date: 06 Jul 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

For a cubic algebraic extension K of ℚ, the behavior of the ideal counting function is considered in this paper. More precisely, let aK(n) be the number of integral ideals of the field K with norm n, we prove an asymptotic formula for the sum n12+n22xaK(n12+n22).

Cite this article

Zhishan YANG . Ideal counting function in cubic fields[J]. Frontiers of Mathematics in China, 2017 , 12(4) : 981 -992 . DOI: 10.1007/s11464-016-0570-7

1
ChandrasekharanK, GoodA. On the number of integral ideals in Galois extensions.Monatsh Math, 1983, 95(2): 99–109

DOI

2
DeligneP, SerreJ P. Formes modulaires de poids 1.Ann Sci Éc Norm Supér (4), 1975, 7: 507–530

3
FomenkoO M. Distribution of lattice points on surfaces of second order.J Math Sci, 1997, 83: 795–815

DOI

4
FomenkoO M. Mean values connected with the Dedekind zeta function.J Math Sci, 2008, 150(3): 2115–2122

DOI

5
FröhlichA, TaylorM J. Algebraic Number Theory.Cambridge Stud Adv Math, Vol 27. Cambridge: Cambridge Univ Press, 1993

6
GoodA. The square mean of Dirichlet series associated with cusp forms.Mathematika, 1982, 29(2): 278–295

DOI

7
Heath-BrownD R. The growth rate of the Dedekind zeta function on the critical line.Acta Arith, 1988, 49(4): 323–339

8
IvićA. The Riemann Zeta-function. The Theory of the Riemann Zeta-function with Applications.New York: John Wiley and Sons, Inc, 1985

9
IwaniecH, KowalskiE. Analytic Number Theory.Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 1997

10
JutilaM. Lectures on a Method in the Theory of Exponential Sums.Tata Inst Fund Res Lectures on Math and Phys, Vol 80. Berlin; Springer, 1987

11
KimH H. Functoriality and number of solutions of congruences.Acta Arith, 2007, 128(3): 235–243

DOI

12
LandauE. Einführung in die elementare and analytische Theorie der algebraischen Zahlen und der Ideale.Teubner, 1927

13
LüG. Mean values connected with the Dedekind zeta-function of a non-normal cubic field.Cent Eur J Math, 2013, 11(2): 274–282

14
LüG, WangY. Note on the number of integral ideals in Galois extension.Sci China Math, 2010, 53(9): 2417–2424

DOI

15
LüG, YangZ. The average behavior of the coefficients of Dedekind zeta function over square numbers.J Number Theory, 2011, 131: 1924–1938

DOI

16
NowakW G. On the distribution of integral ideals in algebraic number theory fields.Math Nachr, 1993, 161: 59–74

DOI

17
MüllerW. On the distribution of ideals in cubic number fields.Monatsh Math, 1988, 106(3): 211–219

DOI

18
TenenbaumG. Introduction to Analytic and Probabilistic Number Theory.Cambridge Stud Adv Math, Vol 46. Cambridge: Cambridge Univ Press, 1995

Outlines

/