Ideal counting function in cubic fields
Zhishan YANG
Ideal counting function in cubic fields
For a cubic algebraic extension K of ℚ, the behavior of the ideal counting function is considered in this paper. More precisely, let aK(n) be the number of integral ideals of the field K with norm n, we prove an asymptotic formula for the sum
Non-normal extension / ideal counting function / Rankin-Selberg convolution
[1] |
ChandrasekharanK, GoodA. On the number of integral ideals in Galois extensions.Monatsh Math, 1983, 95(2): 99–109
CrossRef
Google scholar
|
[2] |
DeligneP, SerreJ P. Formes modulaires de poids 1.Ann Sci Éc Norm Supér (4), 1975, 7: 507–530
|
[3] |
FomenkoO M. Distribution of lattice points on surfaces of second order.J Math Sci, 1997, 83: 795–815
CrossRef
Google scholar
|
[4] |
FomenkoO M. Mean values connected with the Dedekind zeta function.J Math Sci, 2008, 150(3): 2115–2122
CrossRef
Google scholar
|
[5] |
FröhlichA, TaylorM J. Algebraic Number Theory.Cambridge Stud Adv Math, Vol 27. Cambridge: Cambridge Univ Press, 1993
|
[6] |
GoodA. The square mean of Dirichlet series associated with cusp forms.Mathematika, 1982, 29(2): 278–295
CrossRef
Google scholar
|
[7] |
Heath-BrownD R. The growth rate of the Dedekind zeta function on the critical line.Acta Arith, 1988, 49(4): 323–339
|
[8] |
IvićA. The Riemann Zeta-function. The Theory of the Riemann Zeta-function with Applications.New York: John Wiley and Sons, Inc, 1985
|
[9] |
IwaniecH, KowalskiE. Analytic Number Theory.Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 1997
|
[10] |
JutilaM. Lectures on a Method in the Theory of Exponential Sums.Tata Inst Fund Res Lectures on Math and Phys, Vol 80. Berlin; Springer, 1987
|
[11] |
KimH H. Functoriality and number of solutions of congruences.Acta Arith, 2007, 128(3): 235–243
CrossRef
Google scholar
|
[12] |
LandauE. Einführung in die elementare and analytische Theorie der algebraischen Zahlen und der Ideale.Teubner, 1927
|
[13] |
LüG. Mean values connected with the Dedekind zeta-function of a non-normal cubic field.Cent Eur J Math, 2013, 11(2): 274–282
|
[14] |
LüG, WangY. Note on the number of integral ideals in Galois extension.Sci China Math, 2010, 53(9): 2417–2424
CrossRef
Google scholar
|
[15] |
LüG, YangZ. The average behavior of the coefficients of Dedekind zeta function over square numbers.J Number Theory, 2011, 131: 1924–1938
CrossRef
Google scholar
|
[16] |
NowakW G. On the distribution of integral ideals in algebraic number theory fields.Math Nachr, 1993, 161: 59–74
CrossRef
Google scholar
|
[17] |
MüllerW. On the distribution of ideals in cubic number fields.Monatsh Math, 1988, 106(3): 211–219
CrossRef
Google scholar
|
[18] |
TenenbaumG. Introduction to Analytic and Probabilistic Number Theory.Cambridge Stud Adv Math, Vol 46. Cambridge: Cambridge Univ Press, 1995
|
/
〈 | 〉 |