Ideal counting function in cubic fields

Zhishan YANG

PDF(157 KB)
PDF(157 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 981-992. DOI: 10.1007/s11464-016-0570-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Ideal counting function in cubic fields

Author information +
History +

Abstract

For a cubic algebraic extension K of ℚ, the behavior of the ideal counting function is considered in this paper. More precisely, let aK(n) be the number of integral ideals of the field K with norm n, we prove an asymptotic formula for the sum n12+n22xaK(n12+n22).

Keywords

Non-normal extension / ideal counting function / Rankin-Selberg convolution

Cite this article

Download citation ▾
Zhishan YANG. Ideal counting function in cubic fields. Front. Math. China, 2017, 12(4): 981‒992 https://doi.org/10.1007/s11464-016-0570-7

References

[1]
ChandrasekharanK, GoodA. On the number of integral ideals in Galois extensions.Monatsh Math, 1983, 95(2): 99–109
CrossRef Google scholar
[2]
DeligneP, SerreJ P. Formes modulaires de poids 1.Ann Sci Éc Norm Supér (4), 1975, 7: 507–530
[3]
FomenkoO M. Distribution of lattice points on surfaces of second order.J Math Sci, 1997, 83: 795–815
CrossRef Google scholar
[4]
FomenkoO M. Mean values connected with the Dedekind zeta function.J Math Sci, 2008, 150(3): 2115–2122
CrossRef Google scholar
[5]
FröhlichA, TaylorM J. Algebraic Number Theory.Cambridge Stud Adv Math, Vol 27. Cambridge: Cambridge Univ Press, 1993
[6]
GoodA. The square mean of Dirichlet series associated with cusp forms.Mathematika, 1982, 29(2): 278–295
CrossRef Google scholar
[7]
Heath-BrownD R. The growth rate of the Dedekind zeta function on the critical line.Acta Arith, 1988, 49(4): 323–339
[8]
IvićA. The Riemann Zeta-function. The Theory of the Riemann Zeta-function with Applications.New York: John Wiley and Sons, Inc, 1985
[9]
IwaniecH, KowalskiE. Analytic Number Theory.Amer Math Soc Colloq Publ, Vol 53. Providence: Amer Math Soc, 1997
[10]
JutilaM. Lectures on a Method in the Theory of Exponential Sums.Tata Inst Fund Res Lectures on Math and Phys, Vol 80. Berlin; Springer, 1987
[11]
KimH H. Functoriality and number of solutions of congruences.Acta Arith, 2007, 128(3): 235–243
CrossRef Google scholar
[12]
LandauE. Einführung in die elementare and analytische Theorie der algebraischen Zahlen und der Ideale.Teubner, 1927
[13]
LüG. Mean values connected with the Dedekind zeta-function of a non-normal cubic field.Cent Eur J Math, 2013, 11(2): 274–282
[14]
LüG, WangY. Note on the number of integral ideals in Galois extension.Sci China Math, 2010, 53(9): 2417–2424
CrossRef Google scholar
[15]
LüG, YangZ. The average behavior of the coefficients of Dedekind zeta function over square numbers.J Number Theory, 2011, 131: 1924–1938
CrossRef Google scholar
[16]
NowakW G. On the distribution of integral ideals in algebraic number theory fields.Math Nachr, 1993, 161: 59–74
CrossRef Google scholar
[17]
MüllerW. On the distribution of ideals in cubic number fields.Monatsh Math, 1988, 106(3): 211–219
CrossRef Google scholar
[18]
TenenbaumG. Introduction to Analytic and Probabilistic Number Theory.Cambridge Stud Adv Math, Vol 46. Cambridge: Cambridge Univ Press, 1995

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(157 KB)

Accesses

Citations

Detail

Sections
Recommended

/