Frontiers of Mathematics in China >
A restriction theorem for oscillatory integral operator with certain polynomial phase
Received date: 17 Sep 2016
Accepted date: 27 Sep 2016
Published date: 06 Jul 2017
Copyright
We consider the oscillatory integral operator , where the function f is a Schwartz function. In this paper, the restriction theorem on for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.
Shaozhen XU , Dunyan YAN . A restriction theorem for oscillatory integral operator with certain polynomial phase[J]. Frontiers of Mathematics in China, 2017 , 12(4) : 967 -980 . DOI: 10.1007/s11464-017-0637-0
1 |
BennettJ, CarberyA, TaoT. On the multilinear restriction and Kakeya conjectures.Acta Math, 2006, 196(2): 261–302
|
2 |
BourgainJ. Harmonic analysis and combinatorics: how much may they contribute to each other.In: Arnold V, Atiyah M, Lax P, Mazur B, eds. Mathematics: Frontiers and Perspectives. Providence: Amer Math Soc, 2000, 13–32
|
3 |
BourgainJ, GuthL. Bounds on oscillatory integral operators based on multilinear estimates.Geom Funct Anal, 2011, 21(6): 1239–1295
|
4 |
GuthL. A restriction estimate using polynomial partitioning.J Amer Math Soc, 2016, 29(2): 371–413
|
5 |
ŁabaI. From harmonic analysis to arithmetic combinatorics.Bull Amer Math Soc (NS), 2008, 45(1): 77–115
|
6 |
PhongD H, SteinE M. The Newton polyhedron and oscillatory integral operators.Acta Math, 1997, 179(1): 105–152
|
7 |
ShiZ S H, YanD Y. Sharp Lp-boundedness of oscillatory integral operators with polynomial phases.arXiv: 1602.06123
|
8 |
SteinE M, MurphyT S. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993
|
9 |
TaoT. The Bochner-Riesz conjecture implies the restriction conjecture.Duke Math J, 1999, 96(2): 363–376
|
10 |
TaoT. A sharp bilinear restriction estimate for paraboloids.Geom Funct Anal, 2003, 13(6): 1359–1384
|
11 |
TaoT. Some recent progress on the restriction conjecture.In: Brandolini L, Colzani L, Iosevich A, Travaglini G, eds. Fourier analysis and convexity. Applied and Numerical Harmonic Analysis. Boston: Birkhäuser, 2004, 217–243
|
12 |
TaoT, VargasA, VegaL. A bilinear approach to the restriction and Kakeya conjectures.J Amer Math Soc, 1998, 11(4): 967–1000
|
13 |
TomasP A. A restriction theorem for the Fourier transform.Bull Amer Math Soc, 1975, 81(2): 477–478
|
14 |
WolffT. Recent work connected with the Kakeya problem.In: Prospects in Mathematics (Princeton, 1996). Providence: Amer Math Soc, 1999, 129–162
|
15 |
WolffT. A sharp bilinear cone restriction estimate.Ann of Math (2), 2001, 153(3): 661–698
|
16 |
YangC W. Sharp Lp estimates for some oscillatory integral operators in ℝ1.Illinois J Math, 2004, 48(4): 1093–1103
|
/
〈 | 〉 |