A restriction theorem for oscillatory integral operator with certain polynomial phase

Shaozhen XU, Dunyan YAN

PDF(180 KB)
PDF(180 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (4) : 967-980. DOI: 10.1007/s11464-017-0637-0
RESEARCH ARTICLE
RESEARCH ARTICLE

A restriction theorem for oscillatory integral operator with certain polynomial phase

Author information +
History +

Abstract

We consider the oscillatory integral operator Tα,mf(x)=nei(x1α1y1m++xnαnynm)f(y)dy, where the function f is a Schwartz function. In this paper, the restriction theorem on Sn1 for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.

Keywords

Restriction theorem / oscillatory integral operator / L2 boundedness / optimal estimate / necessary condition

Cite this article

Download citation ▾
Shaozhen XU, Dunyan YAN. A restriction theorem for oscillatory integral operator with certain polynomial phase. Front. Math. China, 2017, 12(4): 967‒980 https://doi.org/10.1007/s11464-017-0637-0

References

[1]
BennettJ, CarberyA, TaoT. On the multilinear restriction and Kakeya conjectures.Acta Math, 2006, 196(2): 261–302
CrossRef Google scholar
[2]
BourgainJ. Harmonic analysis and combinatorics: how much may they contribute to each other.In: Arnold V, Atiyah M, Lax P, Mazur B, eds. Mathematics: Frontiers and Perspectives. Providence: Amer Math Soc, 2000, 13–32
[3]
BourgainJ, GuthL. Bounds on oscillatory integral operators based on multilinear estimates.Geom Funct Anal, 2011, 21(6): 1239–1295
CrossRef Google scholar
[4]
GuthL. A restriction estimate using polynomial partitioning.J Amer Math Soc, 2016, 29(2): 371–413
CrossRef Google scholar
[5]
ŁabaI. From harmonic analysis to arithmetic combinatorics.Bull Amer Math Soc (NS), 2008, 45(1): 77–115
CrossRef Google scholar
[6]
PhongD H, SteinE M. The Newton polyhedron and oscillatory integral operators.Acta Math, 1997, 179(1): 105–152
CrossRef Google scholar
[7]
ShiZ S H, YanD Y. Sharp Lp-boundedness of oscillatory integral operators with polynomial phases.arXiv: 1602.06123
[8]
SteinE M, MurphyT S. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993
[9]
TaoT. The Bochner-Riesz conjecture implies the restriction conjecture.Duke Math J, 1999, 96(2): 363–376
CrossRef Google scholar
[10]
TaoT. A sharp bilinear restriction estimate for paraboloids.Geom Funct Anal, 2003, 13(6): 1359–1384
CrossRef Google scholar
[11]
TaoT. Some recent progress on the restriction conjecture.In: Brandolini L, Colzani L, Iosevich A, Travaglini G, eds. Fourier analysis and convexity. Applied and Numerical Harmonic Analysis. Boston: Birkhäuser, 2004, 217–243
CrossRef Google scholar
[12]
TaoT, VargasA, VegaL. A bilinear approach to the restriction and Kakeya conjectures.J Amer Math Soc, 1998, 11(4): 967–1000
CrossRef Google scholar
[13]
TomasP A. A restriction theorem for the Fourier transform.Bull Amer Math Soc, 1975, 81(2): 477–478
CrossRef Google scholar
[14]
WolffT. Recent work connected with the Kakeya problem.In: Prospects in Mathematics (Princeton, 1996). Providence: Amer Math Soc, 1999, 129–162
[15]
WolffT. A sharp bilinear cone restriction estimate.Ann of Math (2), 2001, 153(3): 661–698
[16]
YangC W. Sharp Lp estimates for some oscillatory integral operators in ℝ1.Illinois J Math, 2004, 48(4): 1093–1103

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(180 KB)

Accesses

Citations

Detail

Sections
Recommended

/