A restriction theorem for oscillatory integral operator with certain polynomial phase
Shaozhen XU, Dunyan YAN
A restriction theorem for oscillatory integral operator with certain polynomial phase
We consider the oscillatory integral operator , where the function f is a Schwartz function. In this paper, the restriction theorem on for this operator is obtained. Moreover, we obtain a necessary condition which ensures validity of the restriction theorem.
Restriction theorem / oscillatory integral operator / L2 boundedness / optimal estimate / necessary condition
[1] |
BennettJ, CarberyA, TaoT. On the multilinear restriction and Kakeya conjectures.Acta Math, 2006, 196(2): 261–302
CrossRef
Google scholar
|
[2] |
BourgainJ. Harmonic analysis and combinatorics: how much may they contribute to each other.In: Arnold V, Atiyah M, Lax P, Mazur B, eds. Mathematics: Frontiers and Perspectives. Providence: Amer Math Soc, 2000, 13–32
|
[3] |
BourgainJ, GuthL. Bounds on oscillatory integral operators based on multilinear estimates.Geom Funct Anal, 2011, 21(6): 1239–1295
CrossRef
Google scholar
|
[4] |
GuthL. A restriction estimate using polynomial partitioning.J Amer Math Soc, 2016, 29(2): 371–413
CrossRef
Google scholar
|
[5] |
ŁabaI. From harmonic analysis to arithmetic combinatorics.Bull Amer Math Soc (NS), 2008, 45(1): 77–115
CrossRef
Google scholar
|
[6] |
PhongD H, SteinE M. The Newton polyhedron and oscillatory integral operators.Acta Math, 1997, 179(1): 105–152
CrossRef
Google scholar
|
[7] |
ShiZ S H, YanD Y. Sharp Lp-boundedness of oscillatory integral operators with polynomial phases.arXiv: 1602.06123
|
[8] |
SteinE M, MurphyT S. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993
|
[9] |
TaoT. The Bochner-Riesz conjecture implies the restriction conjecture.Duke Math J, 1999, 96(2): 363–376
CrossRef
Google scholar
|
[10] |
TaoT. A sharp bilinear restriction estimate for paraboloids.Geom Funct Anal, 2003, 13(6): 1359–1384
CrossRef
Google scholar
|
[11] |
TaoT. Some recent progress on the restriction conjecture.In: Brandolini L, Colzani L, Iosevich A, Travaglini G, eds. Fourier analysis and convexity. Applied and Numerical Harmonic Analysis. Boston: Birkhäuser, 2004, 217–243
CrossRef
Google scholar
|
[12] |
TaoT, VargasA, VegaL. A bilinear approach to the restriction and Kakeya conjectures.J Amer Math Soc, 1998, 11(4): 967–1000
CrossRef
Google scholar
|
[13] |
TomasP A. A restriction theorem for the Fourier transform.Bull Amer Math Soc, 1975, 81(2): 477–478
CrossRef
Google scholar
|
[14] |
WolffT. Recent work connected with the Kakeya problem.In: Prospects in Mathematics (Princeton, 1996). Providence: Amer Math Soc, 1999, 129–162
|
[15] |
WolffT. A sharp bilinear cone restriction estimate.Ann of Math (2), 2001, 153(3): 661–698
|
[16] |
YangC W. Sharp Lp estimates for some oscillatory integral operators in ℝ1.Illinois J Math, 2004, 48(4): 1093–1103
|
/
〈 | 〉 |