RESEARCH ARTICLE

Involutions in Weyl group of type F4

  • Jun HU ,
  • Jing ZHANG ,
  • Yabo WU
Expand
  • School of Mathematics and Statistics, Beijing Institute of Technology, Beijing 100081, China

Received date: 28 Sep 2016

Accepted date: 17 Apr 2017

Published date: 06 Jul 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Let W be the Weyl group of type F4: We explicitly describe a nite set of basic braid I*-transformations and show that any two reduced I*-expressions for a given involution in W can be transformed into each other through a series of basic braid I*-transformations. Our main result extends the earlier work on the Weyl groups of classical types (i.e., An; Bn; and Dn).

Cite this article

Jun HU , Jing ZHANG , Yabo WU . Involutions in Weyl group of type F4[J]. Frontiers of Mathematics in China, 2017 , 12(4) : 891 -906 . DOI: 10.1007/s11464-017-0646-z

1
CanM B, JoyceM, WyserB. Chains in weak order posets associated to involutions. J Combin Theory Ser A, 2016, 137: 207–225

DOI

2
GeckM, PfeierG. Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Math Soc Monogr New Ser, Vol 446. Oxford: Clarendon Press, 2000

3
HamakerZ, MarbergE, PawlowskiB. Involution words: counting problems and connections to Schubert calculus for symmetric orbit closures. arXiv: 1508.01823

4
HamakerZ, MarbergE, PawlowskiB. Involution words II: braid relations and atomic structures. J Algebraic Combin, 2017, 45: 701–743

DOI

5
HultmanA. Fixed points of involutive automorphisms of the Bruhat order. Adv Math, 2005, 195(1): 283–296

DOI

6
HultmanA. The combinatorics of twisted involutions in Coxeter groups. Trans Amer Math Soc, 2007, 359(6): 2787–2798

DOI

7
HuJ, ZhangJ. On involutions in symmetric groups and a conjecture of Lusztig. Adv Math, 2016, 287: 1–30

DOI

8
HuJ, ZhangJ. On involutions in Weyl groups. J Lie Theory, 2017, 27: 671–706

9
LusztigG. A bar operator for involutions in a Coxeter groups. Bull Inst Math Acad Sin (NS), 2012, 7: 355–404

10
LusztigG. An involution based left ideal in the Hecke algebra. Represent Theory, 2016, 20(8): 172–186

DOI

11
LusztigG, VoganD. Hecke algebras and involutions in Weyl groups. Bull Inst Math Acad Sin (NS), 2012, 7(3): 323–354

12
MarbergE. Braid relations for involution words in affine Coxeter groups. arXiv: 1703.10437

13
MatsumotoH. Générateurs et relations des groupes de Weyl généralisés. C R Acad Sci Paris, 1964, 258: 3419-3422

14
RichardsonR W, SpringerT A. The Bruhat on symmetric varieties. Geom Dedicata, 1990, 35: 389–436

DOI

15
RichardsonR W, SpringerT A. Complements to: The Bruhat on symmetric varieties. Geom Dedicata, 1994, 49: 231–238

DOI

16
WyserB J, YongA. Polynomials for symmetric orbit closures in the flag variety. Transform Groups, 2017, 22(1): 267–290

DOI

Outlines

/