Frontiers of Mathematics in China >
Riccati equations and Toeplitz-Berezin type symbols on Dirichlet space of unit ball
Received date: 31 Oct 2015
Accepted date: 18 Mar 2017
Published date: 06 Jul 2017
Copyright
The present paper mainly gives some applications of Berezin type symbols on the Dirichlet space of unit ball. We study the solvability of some Riccati operator equations of the form XAX+ XB−CX= Drelated to harmonic Toeplitz operators on the Dirichlet space. Especially, the invariant subspaces of Toeplitz operators are also considered.
Key words: Riccati equation; Toeplitz operator; Dirichlet space; unit ball
Jianjun CHEN , Xiaofeng WANG , Jin XIA , Guangfu CAO . Riccati equations and Toeplitz-Berezin type symbols on Dirichlet space of unit ball[J]. Frontiers of Mathematics in China, 2017 , 12(4) : 769 -785 . DOI: 10.1007/s11464-017-0640-5
1 |
BergerC A, CoburnL A, ZhuK H. Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus. Amer J Math, 1988, 110(5): 921–953
|
2 |
CaoG F. Toeplitz operators on Dirichlet spaces. Chinese J Contemp Math, 2000, 21(3): 283–298 (in Chinese)
|
3 |
CaoG F, ZhuL T. The compactness of Toeplitz operators on Dirichlet spaces. Acta Math Sinica (Chin Ser), 2001, 44(2): 241–248 (in Chinese)
|
4 |
GürdalM, SöhretF. Some results for Toeplitz operators on the Bergman space. Appl Math Comput, 2011, 218(3): 789–793
|
5 |
KaraevM T. On the Riccati equations. Monatsh Math, 2008, 155(2): 161–166
|
6 |
KaraevM T, GürdalM. On the Berezin symbols and Toeplitz operators. Extracta Math, 2010, 25(1): 83–102
|
7 |
LiS X, HuJ Y. Compact operators on Bergman spaces of the unit ball. Acta Math Sinica(Chin Ser), 2004, 47(5): 837–844 (in Chinese)
|
8 |
LuY F, SunS H. Toeplitz operators on Dirichlet spaces. Acta Math Sin (Engl Ser), 2001, 17(4): 643–648
|
9 |
NordgrenE, RosenthalP. Boundary values of Berezin symbols. Oper Theory Adv Appl, 1994, 73: 362–368
|
10 |
WangX F, XiaJ, CaoG F. Some properties of Toeplitz operators on Dirichlet space with respect to Berezin type transform. Sci Sin (Math), 2012, 42(11): 1159–1170
|
11 |
XiaJ, WangX F, CaoG F. Compact operators on Dirichlet space. Acta Math Sci Ser A Chin Ed, 2009, 29: 1196–1205 (in Chinese)
|
/
〈 | 〉 |