RESEARCH ARTICLE

Generalized twistors of nonlocal vertex algebras

  • Jiancai SUN ,
  • Minjing WANG
Expand
  • Department of Mathematics, Shanghai University, Shanghai 200444, China

Received date: 20 Jul 2015

Accepted date: 22 Oct 2015

Published date: 20 Apr 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We introduce and study the concept of (weak) pseudotwistor for a nonlocal vertex algebra, as a generalization of the notion of twistor. We give the relations between pseudotwistors and twisting operators. Furthermore, we study the inverse of an invertible weak pseudotwistor and the composition of two weak pseudotwistors.

Cite this article

Jiancai SUN , Minjing WANG . Generalized twistors of nonlocal vertex algebras[J]. Frontiers of Mathematics in China, 2017 , 12(3) : 733 -748 . DOI: 10.1007/s11464-016-0507-1

1
BakalovB, KacV G. Field algebras. Int Math Res Not, 2003, 3: 123–159

DOI

2
BorcherdsR. Quantum vertex algebras. In: Taniguchi Conference on Mathematics Nara’98. Adv Stud Pure Math, 31. Tokyo: Math Soc Japan, 2001, 51–74

3
CapA, SchichlH, VanzuraJ. On twisted tensor products of algebras. Comm Algebra, 1995, 23: 4701–4735

DOI

4
LepowskyJ, LiH. Introduction to Vertex Operator Algebras and Their Representations. Boston: Birkhäuser, 2003

5
LiH. Axiomatic G1-vertex algebras. Commun Contemp Math, 2003, 5: 281–327

DOI

6
LiH, SunJ. Twisted tensor products of nonlocal vertex algebras. J Algebra, 2011, 345: 266–294

DOI

7
LiH, SunJ. Regular representations of Möbius quantum vertex algebras (in preparation)

8
PanaiteF, OystaeyenF V. Twisted algebras, twisted bialgebras and Rota-Baxter type operators. ArXiv: 1502.05327v2

9
PenaJ, PanaiteF, OystaeyenF V. General twisting of algebras. Adv Math, 2007, 212: 315–337

DOI

10
SunJ. Iterated twisted tensor products of nonlocal vertex algebras. J Algebra, 2013, 381: 233–259

DOI

11
SunJ. L-R-twisted tensor products of nonlocal vertex algebras and their modules. Comm Algebra (to appear)

DOI

12
SunJ. Twistors of nonlocal vertex algebras. Preprint

13
SunJ, YangH. Twisted tensor product modules for Möbius twisted tensor product nonlocal vertex algebras. Internat J Math, 2013, 24: 1350033

DOI

14
Van DaeleA, Van KeerS. The Yang-Baxter and pentagon equation. Compos Math, 1994, 91: 201–22

Outlines

/