Frontiers of Mathematics in China >
Generalized twistors of nonlocal vertex algebras
Received date: 20 Jul 2015
Accepted date: 22 Oct 2015
Published date: 20 Apr 2017
Copyright
We introduce and study the concept of (weak) pseudotwistor for a nonlocal vertex algebra, as a generalization of the notion of twistor. We give the relations between pseudotwistors and twisting operators. Furthermore, we study the inverse of an invertible weak pseudotwistor and the composition of two weak pseudotwistors.
Key words: Twistor; pseudotwistor; nonlocal vertex algebra; twisting operator
Jiancai SUN , Minjing WANG . Generalized twistors of nonlocal vertex algebras[J]. Frontiers of Mathematics in China, 2017 , 12(3) : 733 -748 . DOI: 10.1007/s11464-016-0507-1
1 |
BakalovB, KacV G. Field algebras. Int Math Res Not, 2003, 3: 123–159
|
2 |
BorcherdsR. Quantum vertex algebras. In: Taniguchi Conference on Mathematics Nara’98. Adv Stud Pure Math, 31. Tokyo: Math Soc Japan, 2001, 51–74
|
3 |
CapA, SchichlH, VanzuraJ. On twisted tensor products of algebras. Comm Algebra, 1995, 23: 4701–4735
|
4 |
LepowskyJ, LiH. Introduction to Vertex Operator Algebras and Their Representations. Boston: Birkhäuser, 2003
|
5 |
LiH. Axiomatic G1-vertex algebras. Commun Contemp Math, 2003, 5: 281–327
|
6 |
LiH, SunJ. Twisted tensor products of nonlocal vertex algebras. J Algebra, 2011, 345: 266–294
|
7 |
LiH, SunJ. Regular representations of Möbius quantum vertex algebras (in preparation)
|
8 |
PanaiteF, OystaeyenF V. Twisted algebras, twisted bialgebras and Rota-Baxter type operators. ArXiv: 1502.05327v2
|
9 |
PenaJ, PanaiteF, OystaeyenF V. General twisting of algebras. Adv Math, 2007, 212: 315–337
|
10 |
SunJ. Iterated twisted tensor products of nonlocal vertex algebras. J Algebra, 2013, 381: 233–259
|
11 |
SunJ. L-R-twisted tensor products of nonlocal vertex algebras and their modules. Comm Algebra (to appear)
|
12 |
SunJ. Twistors of nonlocal vertex algebras. Preprint
|
13 |
SunJ, YangH. Twisted tensor product modules for Möbius twisted tensor product nonlocal vertex algebras. Internat J Math, 2013, 24: 1350033
|
14 |
Van DaeleA, Van KeerS. The Yang-Baxter and pentagon equation. Compos Math, 1994, 91: 201–22
|
/
〈 | 〉 |