Generalized twistors of nonlocal vertex algebras

Jiancai SUN , Minjing WANG

Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 733 -748.

PDF (154KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 733 -748. DOI: 10.1007/s11464-016-0507-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalized twistors of nonlocal vertex algebras

Author information +
History +
PDF (154KB)

Abstract

We introduce and study the concept of (weak) pseudotwistor for a nonlocal vertex algebra, as a generalization of the notion of twistor. We give the relations between pseudotwistors and twisting operators. Furthermore, we study the inverse of an invertible weak pseudotwistor and the composition of two weak pseudotwistors.

Keywords

Twistor / pseudotwistor / nonlocal vertex algebra / twisting operator

Cite this article

Download citation ▾
Jiancai SUN, Minjing WANG. Generalized twistors of nonlocal vertex algebras. Front. Math. China, 2017, 12(3): 733-748 DOI:10.1007/s11464-016-0507-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BakalovB, KacV G. Field algebras. Int Math Res Not, 2003, 3: 123–159

[2]

BorcherdsR. Quantum vertex algebras. In: Taniguchi Conference on Mathematics Nara’98. Adv Stud Pure Math, 31. Tokyo: Math Soc Japan, 2001, 51–74

[3]

CapA, SchichlH, VanzuraJ. On twisted tensor products of algebras. Comm Algebra, 1995, 23: 4701–4735

[4]

LepowskyJ, LiH. Introduction to Vertex Operator Algebras and Their Representations. Boston: Birkhäuser, 2003

[5]

LiH. Axiomatic G1-vertex algebras. Commun Contemp Math, 2003, 5: 281–327

[6]

LiH, SunJ. Twisted tensor products of nonlocal vertex algebras. J Algebra, 2011, 345: 266–294

[7]

LiH, SunJ. Regular representations of Möbius quantum vertex algebras (in preparation)

[8]

PanaiteF, OystaeyenF V. Twisted algebras, twisted bialgebras and Rota-Baxter type operators. ArXiv: 1502.05327v2

[9]

PenaJ, PanaiteF, OystaeyenF V. General twisting of algebras. Adv Math, 2007, 212: 315–337

[10]

SunJ. Iterated twisted tensor products of nonlocal vertex algebras. J Algebra, 2013, 381: 233–259

[11]

SunJ. L-R-twisted tensor products of nonlocal vertex algebras and their modules. Comm Algebra (to appear)

[12]

SunJ. Twistors of nonlocal vertex algebras. Preprint

[13]

SunJ, YangH. Twisted tensor product modules for Möbius twisted tensor product nonlocal vertex algebras. Internat J Math, 2013, 24: 1350033

[14]

Van DaeleA, Van KeerS. The Yang-Baxter and pentagon equation. Compos Math, 1994, 91: 201–22

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (154KB)

930

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/