RESEARCH ARTICLE

Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies

  • Jinhao LIANG , 1 ,
  • Po-Jen KUNG 2
Expand
  • 1. Department of Mathematics, Nanjing University, Nanjing 210093, China
  • 2. Department of Applied Mathematics, Chiao Tung University, Hsinchu 30010, Taiwan, China

Received date: 15 Aug 2016

Accepted date: 29 Nov 2016

Published date: 20 Apr 2017

Copyright

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We prove uniform positivity of the Lyapunov exponent for quasiperiodic Schrödinger cocycles with C2 cos-type potentials, large coupling constants, and fixed weak Liouville frequencies.

Cite this article

Jinhao LIANG , Po-Jen KUNG . Uniform positivity of Lyapunov exponent for a class of smooth Schrödinger cocycles with weak Liouville frequencies[J]. Frontiers of Mathematics in China, 2017 , 12(3) : 607 -639 . DOI: 10.1007/s11464-017-0619-2

1
AvialA, DamanikD. Generic singular spectrum for ergodic Schrödinger operators.Duke Math J, 2005, 130: 393–400

DOI

2
BenedicksM, CarlesonL. The dynamics of the Hénon map.Ann of Math, 1991, 133: 73–169

DOI

3
BjerklövK. The dynamics of a class of quasi-periodic Schrödinger cocycles.Ann Henri Poincaré, 2015, 16(4): 961–1031

DOI

4
BourgainJ. Positivity and continuity of the Lyapunov exponent for shifts on Td with arbitrary frequency vector and real analytic potential.J Anal Math, 2005, 96: 313–355

DOI

5
BourgainJ, GoldsteinM. On nonperturbative localization with quasi-periodic potential.Ann of Math, 2000, 152: 835–879

DOI

6
ChanJ. Method of variations of potential of quasi-periodic Schrödinger equations.Geom Funct Anal, 2008, 17: 1416–1478

DOI

7
EliassonL H. Discrete one-dimensional quasi-periodic Schrödinger operators with pure point spectrum.Acta Math, 1997, 179(2): 153–196

DOI

8
FröhlichJ, SpencerT, WittwerP. Localization for a class of one-dimensional quasiperiodic Schrödinger operators.Comm Math Phys, 1990, 132: 5–25

DOI

9
GoldsteinM, SchlagW. Hölder continuity of the integrated density of states for quasiperiodic Schrödinger equations and averages of shifts of subharmonic functions.Ann of Math, 2001, 154: 155—203

DOI

10
HermanM. Une méthode pour minorer les exposants de Lyapounov et quelques exemples montrant le caractère local d'un théorème d'Arnold et de Moser sur le tore de dimension 2.Comment Math Helv, 1983, 58: 453–502

DOI

11
JitomirskayaS, KachkovskiyI. All couplings localization for quasiperiodic operators with Lipchitz monotone potentials.Preprint, 2015

12
KleinS. Anderson localization for the discrete one-dimensional quasi-periodic Schrödinger operator with potential defined by a Gevrey-class function.J Funct Anal, 2005, 218: 255–292

DOI

13
SinaiYa G. Anderson localization for one-dimensional dierence Schrödinger operator with quasiperiodic potential.J Stat Phys, 1987, 46: 861–909

DOI

14
WangY, YouJ. Examples of dicontinuity of Lyapunov exponent in smooth quasiperiodic cocycles.Duke Math J, 2013, 162: 2363–2412

DOI

15
WangY, ZhangZ. Uniform positivity and continuity of Lyapunov exponents for a class of C2 quasi-periodic Schrödinger cocycles.J Funct Anal, 2015, 268: 2525–2585

DOI

16
YoungL S. Lyapunov exponents for some quasi-periodic cocycles.Ergodic Theory Dynam Systems, 1997, 17(2): 483–504

DOI

17
ZhangZ. Positive Lyapunov exponents for quasiperiodic Szegö cocycles.Nonlinearity, 2012, 25: 1771–1797

DOI

Outlines

/