RESEARCH ARTICLE

Deformation of conic negative Kähler-Einstein manifolds

  • Yan LI
Expand
  • School of Mathematical Sciences, Capital Normal University, Beijing 100048, China

Received date: 10 Mar 2016

Accepted date: 02 Jun 2016

Published date: 20 Apr 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this note, we investigate the behavior of a smooth flat family of n-dimensional conic negative Kähler-Einstein manifolds. By H. Guenancia’s argument, a cusp negative Kähler-Einstein metric is the limit of conic negative Kähler-Einstein metric when the cone angle tends to 0. Furthermore, it establishes the behavior of a smooth flat family of n-dimensional cusp negative Kähler-Einstein manifolds.

Cite this article

Yan LI . Deformation of conic negative Kähler-Einstein manifolds[J]. Frontiers of Mathematics in China, 2017 , 12(3) : 597 -606 . DOI: 10.1007/s11464-016-0600-5

1
DatarV, GuoB, SongJ, WangX W. Connecting toric manifolds by conical Kähler-Einstein metrics. arXiv: 1308.6781

2
GilbargD, TrudingerN S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983

DOI

3
GriffithsP, HarrisJ. Principles of Algebraic Geometry. New York: Wiley-Interscience, 1978

4
GuenanciaH. Kähler-Einstein metrics: From cones to cusps. arXiv: 1504.01947

5
GuenanciaH, PáunM. Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. J Differential Geom, 2016, 103(1): 15–57

DOI

6
JeffresT. Uniqueness of Kähler-Einstein cone metrics. Publ Mat, 2000, 44: 437–448

DOI

7
KobayashiR. Kähler-Einstein metric on an open algebraic manifold. Osaka J Math, 1984, 21: 399–418

8
RongX C, ZhangY G. Continuity of extremal transitions and flops for Calabi-Yau manifolds. J Differential Geom, 2011, 89: 233–296

DOI

9
RongX C, ZhangY G. Degeneration of Ricci-flat Calabi-Yau manifolds. Commun. Contemp. Math, 2013, 15(4): 1250057

DOI

10
SongJ. Riemannian geometry of Kähler-Einstein currents. arXiv: 1404.0445

11
SpottiC, SunS, YaoC J. Existence and deformations of Kahler-Einstein metrics on smoothable Q-Fano varieties. arXiv: 1411.1725

12
TianG, YauS T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv Ser Math Phys, 1987, 1: 574–628

Outlines

/