Frontiers of Mathematics in China >
Deformation of conic negative Kähler-Einstein manifolds
Received date: 10 Mar 2016
Accepted date: 02 Jun 2016
Published date: 20 Apr 2017
Copyright
In this note, we investigate the behavior of a smooth flat family of n-dimensional conic negative Kähler-Einstein manifolds. By H. Guenancia’s argument, a cusp negative Kähler-Einstein metric is the limit of conic negative Kähler-Einstein metric when the cone angle tends to 0. Furthermore, it establishes the behavior of a smooth flat family of n-dimensional cusp negative Kähler-Einstein manifolds.
Key words: Conic Kähler-Einstein metric,; convergence
Yan LI . Deformation of conic negative Kähler-Einstein manifolds[J]. Frontiers of Mathematics in China, 2017 , 12(3) : 597 -606 . DOI: 10.1007/s11464-016-0600-5
1 |
DatarV, GuoB, SongJ, WangX W. Connecting toric manifolds by conical Kähler-Einstein metrics. arXiv: 1308.6781
|
2 |
GilbargD, TrudingerN S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983
|
3 |
GriffithsP, HarrisJ. Principles of Algebraic Geometry. New York: Wiley-Interscience, 1978
|
4 |
GuenanciaH. Kähler-Einstein metrics: From cones to cusps. arXiv: 1504.01947
|
5 |
GuenanciaH, PáunM. Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. J Differential Geom, 2016, 103(1): 15–57
|
6 |
JeffresT. Uniqueness of Kähler-Einstein cone metrics. Publ Mat, 2000, 44: 437–448
|
7 |
KobayashiR. Kähler-Einstein metric on an open algebraic manifold. Osaka J Math, 1984, 21: 399–418
|
8 |
RongX C, ZhangY G. Continuity of extremal transitions and flops for Calabi-Yau manifolds. J Differential Geom, 2011, 89: 233–296
|
9 |
RongX C, ZhangY G. Degeneration of Ricci-flat Calabi-Yau manifolds. Commun. Contemp. Math, 2013, 15(4): 1250057
|
10 |
SongJ. Riemannian geometry of Kähler-Einstein currents. arXiv: 1404.0445
|
11 |
SpottiC, SunS, YaoC J. Existence and deformations of Kahler-Einstein metrics on smoothable Q-Fano varieties. arXiv: 1411.1725
|
12 |
TianG, YauS T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv Ser Math Phys, 1987, 1: 574–628
|
/
〈 | 〉 |