Clocconvergence" /> Clocconvergence" /> Clocconvergence" />

Deformation of conic negative Kähler-Einstein manifolds

Yan LI

Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 597 -606.

PDF (148KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (3) : 597 -606. DOI: 10.1007/s11464-016-0600-5
RESEARCH ARTICLE
RESEARCH ARTICLE

Deformation of conic negative Kähler-Einstein manifolds

Author information +
History +
PDF (148KB)

Abstract

In this note, we investigate the behavior of a smooth flat family of n-dimensional conic negative Kähler-Einstein manifolds. By H. Guenancia’s argument, a cusp negative Kähler-Einstein metric is the limit of conic negative Kähler-Einstein metric when the cone angle tends to 0. Furthermore, it establishes the behavior of a smooth flat family of n-dimensional cusp negative Kähler-Einstein manifolds.

Keywords

Conic Kähler-Einstein metric, / Clocconvergence')">Clocconvergence

Cite this article

Download citation ▾
Yan LI. Deformation of conic negative Kähler-Einstein manifolds. Front. Math. China, 2017, 12(3): 597-606 DOI:10.1007/s11464-016-0600-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DatarV, GuoB, SongJ, WangX W. Connecting toric manifolds by conical Kähler-Einstein metrics. arXiv: 1308.6781

[2]

GilbargD, TrudingerN S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983

[3]

GriffithsP, HarrisJ. Principles of Algebraic Geometry. New York: Wiley-Interscience, 1978

[4]

GuenanciaH. Kähler-Einstein metrics: From cones to cusps. arXiv: 1504.01947

[5]

GuenanciaH, PáunM. Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. J Differential Geom, 2016, 103(1): 15–57

[6]

JeffresT. Uniqueness of Kähler-Einstein cone metrics. Publ Mat, 2000, 44: 437–448

[7]

KobayashiR. Kähler-Einstein metric on an open algebraic manifold. Osaka J Math, 1984, 21: 399–418

[8]

RongX C, ZhangY G. Continuity of extremal transitions and flops for Calabi-Yau manifolds. J Differential Geom, 2011, 89: 233–296

[9]

RongX C, ZhangY G. Degeneration of Ricci-flat Calabi-Yau manifolds. Commun. Contemp. Math, 2013, 15(4): 1250057

[10]

SongJ. Riemannian geometry of Kähler-Einstein currents. arXiv: 1404.0445

[11]

SpottiC, SunS, YaoC J. Existence and deformations of Kahler-Einstein metrics on smoothable Q-Fano varieties. arXiv: 1411.1725

[12]

TianG, YauS T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv Ser Math Phys, 1987, 1: 574–628

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (148KB)

674

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/