Deformation of conic negative Kähler-Einstein manifolds
Yan LI
Deformation of conic negative Kähler-Einstein manifolds
In this note, we investigate the behavior of a smooth flat family of n-dimensional conic negative Kähler-Einstein manifolds. By H. Guenancia’s argument, a cusp negative Kähler-Einstein metric is the limit of conic negative Kähler-Einstein metric when the cone angle tends to 0. Furthermore, it establishes the behavior of a smooth flat family of n-dimensional cusp negative Kähler-Einstein manifolds.
Conic Kähler-Einstein metric, / convergence
[1] |
DatarV, GuoB, SongJ, WangX W. Connecting toric manifolds by conical Kähler-Einstein metrics. arXiv: 1308.6781
|
[2] |
GilbargD, TrudingerN S. Elliptic Partial Differential Equations of Second Order. Berlin: Springer, 1983
CrossRef
Google scholar
|
[3] |
GriffithsP, HarrisJ. Principles of Algebraic Geometry. New York: Wiley-Interscience, 1978
|
[4] |
GuenanciaH. Kähler-Einstein metrics: From cones to cusps. arXiv: 1504.01947
|
[5] |
GuenanciaH, PáunM. Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. J Differential Geom, 2016, 103(1): 15–57
CrossRef
Google scholar
|
[6] |
JeffresT. Uniqueness of Kähler-Einstein cone metrics. Publ Mat, 2000, 44: 437–448
CrossRef
Google scholar
|
[7] |
KobayashiR. Kähler-Einstein metric on an open algebraic manifold. Osaka J Math, 1984, 21: 399–418
|
[8] |
RongX C, ZhangY G. Continuity of extremal transitions and flops for Calabi-Yau manifolds. J Differential Geom, 2011, 89: 233–296
CrossRef
Google scholar
|
[9] |
RongX C, ZhangY G. Degeneration of Ricci-flat Calabi-Yau manifolds. Commun. Contemp. Math, 2013, 15(4): 1250057
CrossRef
Google scholar
|
[10] |
SongJ. Riemannian geometry of Kähler-Einstein currents. arXiv: 1404.0445
|
[11] |
SpottiC, SunS, YaoC J. Existence and deformations of Kahler-Einstein metrics on smoothable Q-Fano varieties. arXiv: 1411.1725
|
[12] |
TianG, YauS T. Existence of Kähler-Einstein metrics on complete Kähler manifolds and their applications to algebraic geometry. Adv Ser Math Phys, 1987, 1: 574–628
|
/
〈 | 〉 |