RESEARCH ARTICLE

Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space

  • Dan YANG 1 ,
  • Yu FU , 2 ,
  • Lan LI , 3
Expand
  • 1. School of Mathematics, Liaoning University, Shenyang 110036, China
  • 2. School of Mathematics, Dongbei University of Finance and Economics, Dalian 116025, China
  • 3. College of Mathematics and Computational Science, Shenzhen University, Shenzhen 518060, China

Received date: 31 Aug 2015

Accepted date: 14 Mar 2016

Published date: 20 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this work, we study these class of surfaces in the 3-dimensional Minkowski space L3. We achieve a complete classification of spacelike generalized constant ratio surfaces in L3.

Cite this article

Dan YANG , Yu FU , Lan LI . Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space[J]. Frontiers of Mathematics in China, 2017 , 12(2) : 459 -480 . DOI: 10.1007/s11464-016-0536-9

1
Boyadzhiev K N. Equiangular surfaces, self-similar surfaces, and the geometry of seashells. College Math J, 2007, 38(4): 265–271

2
Chen B Y. Geometry of Submanifolds. New York: Marcel Dekker, 1973

3
Chen B Y. Constant-ratio hypersurfaces. Soochow J Math, 2001, 27(4): 353–362

4
Dillen F, Fastenakels J, Van der Veken J. Surfaces in S2×R with a canonical principal direction. Ann Global Anal Geom, 2009, 35(4): 381–396

DOI

5
Dillen F, Fastenakels J, Van der Veken J, Vrancken L. Constant angle surfaces in S2×R. Monatsh Math, 2007, 152(2): 89–96

DOI

6
Dillen F, Munteanu M I. Constant angle surfaces in H2×R.Bull Braz Math Soc, 2009, 40(1): 85–97

DOI

7
Dillen F, Munteanu M I, Nistor A I. Canonical coordinates and principal directions for surfaces in H2×R Taiwanese J Math, 2011, 15(5): 2265–2289

8
Dillen F, Munteanu M I, Van der Veken J. Vrancken L. Constant angle surfaces in a warped product. Balkan J Geom Appl, 2011, 16(2): 35–47

9
Fastenakels J, Munteanu M I, Van der Veken J. Constant angle surfaces in the Heisenberg group. Acta Math Sin (Engl Ser), 2011, 27(4): 747–756

DOI

10
Fu Y, Munteanu M I. Generalized constant ratio surfaces in E3.Bull Braz Math Soc (N S), 2014, 45(1): 1–18

DOI

11
Fu Y, Nistor A I. Constant angle property and canonical principal directions for surfaces in M2(c)×R1.Mediterr J Math, 2013, 10(2): 1035–1049

DOI

12
Fu Y, Wang X S. Classification of timelike constant slope surfaces in 3-dimensional Minkowski space. Results Math, 2012, 63: 1095–1108

DOI

13
Fu Y, Yang D. On constant slope spacelike surfaces in 3-dimensional Minkowski space. J Math Anal Appl, 2012, 385(1): 208–220

DOI

14
Garnica E, Palmas O, Ruiz-Hernández G. Hypersurfaces with a canonical principal direction. Differential Geom Appl, 2012, 30(5): 382–391

DOI

15
Haesen S, Nistor A I, Verstraelen L. On growth and form and geometry. I. Kragujevac J Math, 2012, 36(1): 5–23

16
Hano J, Nomizu K. Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space. Tohoku Math J, 1984, 32(3): 427–437

DOI

17
López R, Munteanu M I. On the geometry of constant angle surfaces in Sol3.Kyushu J Math, 2011, 65(2): 237–249

DOI

18
Munteanu M I. From golden spirals to constant slope surfaces. J Math Phys, 2010, 51(7): 073507

DOI

19
Munteanu M I, Nistor A I. A new approach on constant angle surfaces in E3.Turkish J Math, 2009, 33(1): 169–178

20
Munteanu M I, Nistor A I. Complete classification of surfaces with a canonical principal direction in the Euclidean space E3. Cent Eur J Math, 2011, 9(2): 378–389

DOI

21
Nistor A I. A note on spacelike surfaces in Minkowski 3-space. Filomat, 2013, 7(5): 843–849

DOI

22
O'Neill B. Semi-Riemannian Geometry with Applications to Relativity, New York: Academic Press, 1982

23
Tojeiro R. On a class of hypersurfaces in Sn×R and Hn×R.Bull Braz Math Soc, 2010, 41(2): 199–209

DOI

Outlines

/