Frontiers of Mathematics in China >
Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space
Received date: 31 Aug 2015
Accepted date: 14 Mar 2016
Published date: 20 Feb 2017
Copyright
Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this work, we study these class of surfaces in the 3-dimensional Minkowski space . We achieve a complete classification of spacelike generalized constant ratio surfaces in .
Dan YANG , Yu FU , Lan LI . Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space[J]. Frontiers of Mathematics in China, 2017 , 12(2) : 459 -480 . DOI: 10.1007/s11464-016-0536-9
1 |
Boyadzhiev K N. Equiangular surfaces, self-similar surfaces, and the geometry of seashells. College Math J, 2007, 38(4): 265–271
|
2 |
Chen B Y. Geometry of Submanifolds. New York: Marcel Dekker, 1973
|
3 |
Chen B Y. Constant-ratio hypersurfaces. Soochow J Math, 2001, 27(4): 353–362
|
4 |
Dillen F, Fastenakels J, Van der Veken J. Surfaces in
|
5 |
Dillen F, Fastenakels J, Van der Veken J, Vrancken L. Constant angle surfaces in
|
6 |
Dillen F, Munteanu M I. Constant angle surfaces in
|
7 |
Dillen F, Munteanu M I, Nistor A I. Canonical coordinates and principal directions for surfaces in
|
8 |
Dillen F, Munteanu M I, Van der Veken J. Vrancken L. Constant angle surfaces in a warped product. Balkan J Geom Appl, 2011, 16(2): 35–47
|
9 |
Fastenakels J, Munteanu M I, Van der Veken J. Constant angle surfaces in the Heisenberg group. Acta Math Sin (Engl Ser), 2011, 27(4): 747–756
|
10 |
Fu Y, Munteanu M I. Generalized constant ratio surfaces in
|
11 |
Fu Y, Nistor A I. Constant angle property and canonical principal directions for surfaces in
|
12 |
Fu Y, Wang X S. Classification of timelike constant slope surfaces in 3-dimensional Minkowski space. Results Math, 2012, 63: 1095–1108
|
13 |
Fu Y, Yang D. On constant slope spacelike surfaces in 3-dimensional Minkowski space. J Math Anal Appl, 2012, 385(1): 208–220
|
14 |
Garnica E, Palmas O, Ruiz-Hernández G. Hypersurfaces with a canonical principal direction. Differential Geom Appl, 2012, 30(5): 382–391
|
15 |
Haesen S, Nistor A I, Verstraelen L. On growth and form and geometry. I. Kragujevac J Math, 2012, 36(1): 5–23
|
16 |
Hano J, Nomizu K. Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space. Tohoku Math J, 1984, 32(3): 427–437
|
17 |
López R, Munteanu M I. On the geometry of constant angle surfaces in Sol3.Kyushu J Math, 2011, 65(2): 237–249
|
18 |
Munteanu M I. From golden spirals to constant slope surfaces. J Math Phys, 2010, 51(7): 073507
|
19 |
Munteanu M I, Nistor A I. A new approach on constant angle surfaces in
|
20 |
Munteanu M I, Nistor A I. Complete classification of surfaces with a canonical principal direction in the Euclidean space
|
21 |
Nistor A I. A note on spacelike surfaces in Minkowski 3-space. Filomat, 2013, 7(5): 843–849
|
22 |
O'Neill B. Semi-Riemannian Geometry with Applications to Relativity, New York: Academic Press, 1982
|
23 |
Tojeiro R. On a class of hypersurfaces in
|
/
〈 | 〉 |