Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space
Dan YANG, Yu FU, Lan LI
Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space
Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this work, we study these class of surfaces in the 3-dimensional Minkowski space . We achieve a complete classification of spacelike generalized constant ratio surfaces in .
Generalized constant ratio (GCR) surface / constant slope surface / constant ratio surface
[1] |
Boyadzhiev K N. Equiangular surfaces, self-similar surfaces, and the geometry of seashells. College Math J, 2007, 38(4): 265–271
|
[2] |
Chen B Y. Geometry of Submanifolds. New York: Marcel Dekker, 1973
|
[3] |
Chen B Y. Constant-ratio hypersurfaces. Soochow J Math, 2001, 27(4): 353–362
|
[4] |
Dillen F, Fastenakels J, Van der Veken J. Surfaces in
CrossRef
Google scholar
|
[5] |
Dillen F, Fastenakels J, Van der Veken J, Vrancken L. Constant angle surfaces in
CrossRef
Google scholar
|
[6] |
Dillen F, Munteanu M I. Constant angle surfaces in
CrossRef
Google scholar
|
[7] |
Dillen F, Munteanu M I, Nistor A I. Canonical coordinates and principal directions for surfaces in
|
[8] |
Dillen F, Munteanu M I, Van der Veken J. Vrancken L. Constant angle surfaces in a warped product. Balkan J Geom Appl, 2011, 16(2): 35–47
|
[9] |
Fastenakels J, Munteanu M I, Van der Veken J. Constant angle surfaces in the Heisenberg group. Acta Math Sin (Engl Ser), 2011, 27(4): 747–756
CrossRef
Google scholar
|
[10] |
Fu Y, Munteanu M I. Generalized constant ratio surfaces in
CrossRef
Google scholar
|
[11] |
Fu Y, Nistor A I. Constant angle property and canonical principal directions for surfaces in
CrossRef
Google scholar
|
[12] |
Fu Y, Wang X S. Classification of timelike constant slope surfaces in 3-dimensional Minkowski space. Results Math, 2012, 63: 1095–1108
CrossRef
Google scholar
|
[13] |
Fu Y, Yang D. On constant slope spacelike surfaces in 3-dimensional Minkowski space. J Math Anal Appl, 2012, 385(1): 208–220
CrossRef
Google scholar
|
[14] |
Garnica E, Palmas O, Ruiz-Hernández G. Hypersurfaces with a canonical principal direction. Differential Geom Appl, 2012, 30(5): 382–391
CrossRef
Google scholar
|
[15] |
Haesen S, Nistor A I, Verstraelen L. On growth and form and geometry. I. Kragujevac J Math, 2012, 36(1): 5–23
|
[16] |
Hano J, Nomizu K. Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space. Tohoku Math J, 1984, 32(3): 427–437
CrossRef
Google scholar
|
[17] |
López R, Munteanu M I. On the geometry of constant angle surfaces in Sol3.Kyushu J Math, 2011, 65(2): 237–249
CrossRef
Google scholar
|
[18] |
Munteanu M I. From golden spirals to constant slope surfaces. J Math Phys, 2010, 51(7): 073507
CrossRef
Google scholar
|
[19] |
Munteanu M I, Nistor A I. A new approach on constant angle surfaces in
|
[20] |
Munteanu M I, Nistor A I. Complete classification of surfaces with a canonical principal direction in the Euclidean space
CrossRef
Google scholar
|
[21] |
Nistor A I. A note on spacelike surfaces in Minkowski 3-space. Filomat, 2013, 7(5): 843–849
CrossRef
Google scholar
|
[22] |
O'Neill B. Semi-Riemannian Geometry with Applications to Relativity, New York: Academic Press, 1982
|
[23] |
Tojeiro R. On a class of hypersurfaces in
CrossRef
Google scholar
|
/
〈 | 〉 |