Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space

Dan YANG , Yu FU , Lan LI

Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 459 -480.

PDF (130KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 459 -480. DOI: 10.1007/s11464-016-0536-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space

Author information +
History +
PDF (130KB)

Abstract

Generalized constant ratio surfaces are defined by the property that the tangential component of the position vector is a principal direction on the surfaces. In this work, we study these class of surfaces in the 3-dimensional Minkowski space L3. We achieve a complete classification of spacelike generalized constant ratio surfaces in L3.

Keywords

Generalized constant ratio (GCR) surface / constant slope surface / constant ratio surface

Cite this article

Download citation ▾
Dan YANG, Yu FU, Lan LI. Geometry of spacelike generalized constant ratio surfaces in Minkowski 3-space. Front. Math. China, 2017, 12(2): 459-480 DOI:10.1007/s11464-016-0536-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Boyadzhiev K N. Equiangular surfaces, self-similar surfaces, and the geometry of seashells. College Math J, 2007, 38(4): 265–271

[2]

Chen B Y. Geometry of Submanifolds. New York: Marcel Dekker, 1973

[3]

Chen B Y. Constant-ratio hypersurfaces. Soochow J Math, 2001, 27(4): 353–362

[4]

Dillen F, Fastenakels J, Van der Veken J. Surfaces in S2×R with a canonical principal direction. Ann Global Anal Geom, 2009, 35(4): 381–396

[5]

Dillen F, Fastenakels J, Van der Veken J, Vrancken L. Constant angle surfaces in S2×R. Monatsh Math, 2007, 152(2): 89–96

[6]

Dillen F, Munteanu M I. Constant angle surfaces in H2×R.Bull Braz Math Soc, 2009, 40(1): 85–97

[7]

Dillen F, Munteanu M I, Nistor A I. Canonical coordinates and principal directions for surfaces in H2×R Taiwanese J Math, 2011, 15(5): 2265–2289

[8]

Dillen F, Munteanu M I, Van der Veken J. Vrancken L. Constant angle surfaces in a warped product. Balkan J Geom Appl, 2011, 16(2): 35–47

[9]

Fastenakels J, Munteanu M I, Van der Veken J. Constant angle surfaces in the Heisenberg group. Acta Math Sin (Engl Ser), 2011, 27(4): 747–756

[10]

Fu Y, Munteanu M I. Generalized constant ratio surfaces in E3.Bull Braz Math Soc (N S), 2014, 45(1): 1–18

[11]

Fu Y, Nistor A I. Constant angle property and canonical principal directions for surfaces in M2(c)×R1.Mediterr J Math, 2013, 10(2): 1035–1049

[12]

Fu Y, Wang X S. Classification of timelike constant slope surfaces in 3-dimensional Minkowski space. Results Math, 2012, 63: 1095–1108

[13]

Fu Y, Yang D. On constant slope spacelike surfaces in 3-dimensional Minkowski space. J Math Anal Appl, 2012, 385(1): 208–220

[14]

Garnica E, Palmas O, Ruiz-Hernández G. Hypersurfaces with a canonical principal direction. Differential Geom Appl, 2012, 30(5): 382–391

[15]

Haesen S, Nistor A I, Verstraelen L. On growth and form and geometry. I. Kragujevac J Math, 2012, 36(1): 5–23

[16]

Hano J, Nomizu K. Surfaces of revolution with constant mean curvature in Lorentz-Minkowski space. Tohoku Math J, 1984, 32(3): 427–437

[17]

López R, Munteanu M I. On the geometry of constant angle surfaces in Sol3.Kyushu J Math, 2011, 65(2): 237–249

[18]

Munteanu M I. From golden spirals to constant slope surfaces. J Math Phys, 2010, 51(7): 073507

[19]

Munteanu M I, Nistor A I. A new approach on constant angle surfaces in E3.Turkish J Math, 2009, 33(1): 169–178

[20]

Munteanu M I, Nistor A I. Complete classification of surfaces with a canonical principal direction in the Euclidean space E3. Cent Eur J Math, 2011, 9(2): 378–389

[21]

Nistor A I. A note on spacelike surfaces in Minkowski 3-space. Filomat, 2013, 7(5): 843–849

[22]

O'Neill B. Semi-Riemannian Geometry with Applications to Relativity, New York: Academic Press, 1982

[23]

Tojeiro R. On a class of hypersurfaces in Sn×R and Hn×R.Bull Braz Math Soc, 2010, 41(2): 199–209

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (130KB)

641

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/