RESEARCH ARTICLE

DDT Theorem over square-free numbers in short interval

  • Bin FENG , 1,2 ,
  • Zhen CUI 1
Expand
  • 1. School of Mathematics Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2. College of Mathematics and Statistics, Yangtze Normal University, Fuling 408100, China

Received date: 23 Feb 2016

Accepted date: 06 May 2016

Published date: 20 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We study the Cesàro means related to the divisor function. We show that the DDT Theorem holds over square-free numbers in short interval, which generalizes some results established by Deshouillers-Dress-Tenenbaum and by Cui-Wu.

Cite this article

Bin FENG , Zhen CUI . DDT Theorem over square-free numbers in short interval[J]. Frontiers of Mathematics in China, 2017 , 12(2) : 367 -375 . DOI: 10.1007/s11464-016-0547-6

1
Cui Z, Wu J. The Selberg-Delange method in short intervals with an application. Acta Arith, 2014, 163(3): 247–260

DOI

2
Delange H. Sur les formules dues `a Atle Selberg. Bull Sci Math 2º série, 1959, 83: 101–111

3
Delange H. Sur les formules de Atle Selberg. Acta Arith, 1971, 19: 105–146

4
Deshouillers J-M, Dress F, Tenenbaum G. Lois de répartition des diviseurs, 1. Acta Arith, 1979, 23: 273–283

5
Hanrot G, Tenenbaum G, Wu J. Moyennes de certaines fonctions arithmétiques sur les entiers friables, 2. Proc Lond Math Soc (3), 2008, 96: 107–135

6
Lau Y-K. Summatory formula of the convolution of two arithmetical functions. Monatsh Math, 2002, 136(1): 35–45

DOI

7
Lau Y-K, Wu J. Sums of some multiplicative functions over a special set of integers. Acta Arith, 2003, 101(4): 365–394

DOI

8
Selberg A. Note on the paper by L. G. Sathe. J Indian Math Soc, 1954, 18: 83–87

9
Tenenbaum G. Introduction to Analytic and Probabilistic Number theory. Cambridge Studies in Advanced Mathematics, 46. Cambridge: Cambridge University Press, 1995

10
Tenenbaum G, Wu J. Moyennes de certaines fonctions multiplicatives sur les entiers friables. J Reine Angew Math, 2003, 564: 119–166

DOI

Outlines

/