DDT Theorem over square-free numbers in short interval
Bin FENG, Zhen CUI
DDT Theorem over square-free numbers in short interval
We study the Cesàro means related to the divisor function. We show that the DDT Theorem holds over square-free numbers in short interval, which generalizes some results established by Deshouillers-Dress-Tenenbaum and by Cui-Wu.
Selberg-Delang method / arcsine law / square-free number
[1] |
Cui Z, Wu J. The Selberg-Delange method in short intervals with an application. Acta Arith, 2014, 163(3): 247–260
CrossRef
Google scholar
|
[2] |
Delange H. Sur les formules dues `a Atle Selberg. Bull Sci Math 2º série, 1959, 83: 101–111
|
[3] |
Delange H. Sur les formules de Atle Selberg. Acta Arith, 1971, 19: 105–146
|
[4] |
Deshouillers J-M, Dress F, Tenenbaum G. Lois de répartition des diviseurs, 1. Acta Arith, 1979, 23: 273–283
|
[5] |
Hanrot G, Tenenbaum G, Wu J. Moyennes de certaines fonctions arithmétiques sur les entiers friables, 2. Proc Lond Math Soc (3), 2008, 96: 107–135
|
[6] |
Lau Y-K. Summatory formula of the convolution of two arithmetical functions. Monatsh Math, 2002, 136(1): 35–45
CrossRef
Google scholar
|
[7] |
Lau Y-K, Wu J. Sums of some multiplicative functions over a special set of integers. Acta Arith, 2003, 101(4): 365–394
CrossRef
Google scholar
|
[8] |
Selberg A. Note on the paper by L. G. Sathe. J Indian Math Soc, 1954, 18: 83–87
|
[9] |
Tenenbaum G. Introduction to Analytic and Probabilistic Number theory. Cambridge Studies in Advanced Mathematics, 46. Cambridge: Cambridge University Press, 1995
|
[10] |
Tenenbaum G, Wu J. Moyennes de certaines fonctions multiplicatives sur les entiers friables. J Reine Angew Math, 2003, 564: 119–166
CrossRef
Google scholar
|
/
〈 | 〉 |