DDT Theorem over square-free numbers in short interval

Bin FENG, Zhen CUI

PDF(133 KB)
PDF(133 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 367-375. DOI: 10.1007/s11464-016-0547-6
RESEARCH ARTICLE
RESEARCH ARTICLE

DDT Theorem over square-free numbers in short interval

Author information +
History +

Abstract

We study the Cesàro means related to the divisor function. We show that the DDT Theorem holds over square-free numbers in short interval, which generalizes some results established by Deshouillers-Dress-Tenenbaum and by Cui-Wu.

Keywords

Selberg-Delang method / arcsine law / square-free number

Cite this article

Download citation ▾
Bin FENG, Zhen CUI. DDT Theorem over square-free numbers in short interval. Front. Math. China, 2017, 12(2): 367‒375 https://doi.org/10.1007/s11464-016-0547-6

References

[1]
Cui Z, Wu J. The Selberg-Delange method in short intervals with an application. Acta Arith, 2014, 163(3): 247–260
CrossRef Google scholar
[2]
Delange H. Sur les formules dues `a Atle Selberg. Bull Sci Math 2º série, 1959, 83: 101–111
[3]
Delange H. Sur les formules de Atle Selberg. Acta Arith, 1971, 19: 105–146
[4]
Deshouillers J-M, Dress F, Tenenbaum G. Lois de répartition des diviseurs, 1. Acta Arith, 1979, 23: 273–283
[5]
Hanrot G, Tenenbaum G, Wu J. Moyennes de certaines fonctions arithmétiques sur les entiers friables, 2. Proc Lond Math Soc (3), 2008, 96: 107–135
[6]
Lau Y-K. Summatory formula of the convolution of two arithmetical functions. Monatsh Math, 2002, 136(1): 35–45
CrossRef Google scholar
[7]
Lau Y-K, Wu J. Sums of some multiplicative functions over a special set of integers. Acta Arith, 2003, 101(4): 365–394
CrossRef Google scholar
[8]
Selberg A. Note on the paper by L. G. Sathe. J Indian Math Soc, 1954, 18: 83–87
[9]
Tenenbaum G. Introduction to Analytic and Probabilistic Number theory. Cambridge Studies in Advanced Mathematics, 46. Cambridge: Cambridge University Press, 1995
[10]
Tenenbaum G, Wu J. Moyennes de certaines fonctions multiplicatives sur les entiers friables. J Reine Angew Math, 2003, 564: 119–166
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(133 KB)

Accesses

Citations

Detail

Sections
Recommended

/