RESEARCH ARTICLE

Anti-forcing spectrum of any cata-condensed hexagonal system is continuous

  • Kai DENG 1,2 ,
  • Heping ZHANG , 1
Expand
  • 1. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000, China
  • 2. School of Mathematics and Information Science, Beifang University of Nationalities, Yinchuan 750027, China

Received date: 20 Nov 2014

Accepted date: 15 Sep 2016

Published date: 20 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The anti-forcing number of a perfect matching M of a graph G is the minimal number of edges not in M whose removal makes M a unique perfect matching of the resulting graph. The anti-forcing spectrum of G is the set of anti-forcing numbers over all perfect matchings of G: In this paper, we prove that the anti-forcing spectrum of any cata-condensed hexagonal system is continuous, that is, it is a finite set of consecutive integers.

Cite this article

Kai DENG , Heping ZHANG . Anti-forcing spectrum of any cata-condensed hexagonal system is continuous[J]. Frontiers of Mathematics in China, 2017 , 12(2) : 325 -337 . DOI: 10.1007/s11464-016-0605-0

1
Adams P, Mahdian M, Mahmoodian E S. On the forced matching numbers of bipartite graphs. Discrete Math, 2004, 281: 1–12

DOI

2
Afshani P, Hatami H, Mahmoodian E S. On the spectrum of the forced matching number of graphs. Australas J Combin, 2004, 30: 147–160

3
Che Z, Chen Z. Forcing on perfect matchings|A survey. MATCH Commun Math Comput Chem, 2011, 66: 93–136

4
Cyvin S J, Gutman I. Kekulé Structures in Benzenoid Hydrocarbons. Lecture Notes in Chemistry, Vol 46. Berlin: Springer, 1988

DOI

5
Deng H. The anti-forcing number of hexagonal chains. MATCH Commun Math Comput Chem, 2007, 58: 675–682

6
Deng H. The anti-forcing number of double hexagonal chains. MATCH Commun Math Comput Chem, 2008, 60: 183–192

7
Deng K, Zhang H. Anti-forcing spectra of perfect matchings of graphs. J Comb Optim, 2015,

DOI

8
Fries K. Uber byclische verbindungen und ihren vergleich mit dem naphtalin. Ann Chem, 1927, 454: 121–324

DOI

9
Harary F, Klein D, Živković T. Graphical properties of polyhexes: perfect matching vector and forcing. J Math Chem, 1991, 6: 295–306

DOI

10
Jiang X, Zhang H. On forcing matching number of boron-nitrogen fullerene graphs. Discrete Appl Math, 2011, 159: 1581–1593

DOI

11
Jiang X, Zhang H. The maximum forcing number of cylindrical grid, toroidal 4-8 lattice and Klein bottle 4-8 lattice. J Math Chem, 2016, 54: 18–32

DOI

12
Klein D, Randić M. Innate degree of freedom of a graph. J Comput Chem, 1987, 8:516–521

DOI

13
Lam F, Pachter L. Forcing number for stop signs. Theoret Comput Sci, 2003, 303:409–416

DOI

14
Lei H, Yeh Y, Zhang H. Anti-forcing numbers of perfect matchings of graphs. Discrete Appl Math, 2016, 202: 95–105

DOI

15
Lovász L, Plummer M. Matching Theory. Annals of Discrete Mathematics, Vol 29. Amsterdam: North-Holland, 1986

16
Pachter L, Kim P.Forcing matchings on square grids. Discrete Math, 1998, 190: 287–294

DOI

17
Randić M, Vukičević D. Kekulé structures of fullerene C70: Croat Chem Acta, 2006, 79: 471–481

18
Riddle M E. The minimum forcing number for the torus and hypercube. Discrete Math, 2002, 245: 283–292

DOI

19
Shi L, Zhang H. Forcing and anti-forcing numbers of (3, 6)-fullerenes. MATCH Commun Math Comput Chem, 2016, 76: 597–614

20
Vukičević D, Gutman I, Randić M. On instability of fullerene C72: Croat Chem Acta, 2006, 79: 429–436

21
Vukičcević D, Randić M. On Kekuklé structures of buckminsterfullerene. Chem Phys Lett, 2005, 401: 446–450

DOI

22
Vukičević D, Trinajstié N. On the anti-forcing number of benzenoids. J Math Chem, 2007, 42: 575–583

DOI

23
Vukičević D, Trinajstié N. On the anti-kekulé number and anti-forcing number of cata-condensed benzenoids. J Math Chem, 2008, 43: 719–726

DOI

24
Wang H, Ye D, Zhang H. The forcing number of toroidal polyhexes. J Math Chem, 2008, 43: 457–475

DOI

25
Xu L, Bian H, Zhang F. Maximum forcing number of hexagonal systems. MATCH Commun Math Comput Chem, 2013, 70: 493–500

26
Yang Q, Zhang H, Lin Y. On the anti-forcing number of fullerene graphs. MATCH Commun Math Comput Chem, 2015, 74: 681–700

27
Zhang F, Guo X, Chen R. Z-transformation graphs of perfect matchings of hexagonal systems. Discrete Math, 1988, 72: 405–415

DOI

28
Zhang H, Deng K. Forcing spectrum of a hexagonal system with a forcing edge. MATCH Commun Math Comput Chem, 2015, 73: 457–471

29
Zhang H, Yao H, Yang D. A min-max result on outerplane bipartite graphs. Appl Math Lett, 2007, 20: 199–205

DOI

30
Zhang H, Ye D, Shiu W C. Forcing matching numbers of fullerene graphs. Discrete Appl Math, 2010, 158: 573–582

DOI

31
Zhang H, Zhang F. Plane elementary bipartite graphs. Discrete Appl Math, 2000, 105: 291–311

DOI

32
Zhang Q, Bian H, Vumar E. On the anti-kekulé and anti-forcing number of cata-condensed phenylenes. MATCH Commun Math Comput Chem, 2011, 65: 799–806

33
Zhou X, Zhang H. Clar sets and maximum forcing numbers of hexagonal systems. MATCH Commun Math Comput Chem, 2015, 74: 161–174

Outlines

/