Anti-forcing spectrum of any cata-condensed hexagonal system is continuous
Kai DENG , Heping ZHANG
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 325 -337.
Anti-forcing spectrum of any cata-condensed hexagonal system is continuous
The anti-forcing number of a perfect matching M of a graph G is the minimal number of edges not in M whose removal makes M a unique perfect matching of the resulting graph. The anti-forcing spectrum of G is the set of anti-forcing numbers over all perfect matchings of G: In this paper, we prove that the anti-forcing spectrum of any cata-condensed hexagonal system is continuous, that is, it is a finite set of consecutive integers.
Perfect matching / anti-forcing number / anti-forcing spectrum / hexagonal system
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
Higher Education Press and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |