RESEARCH ARTICLE

Oscillatory hyper Hilbert transforms along general curves

  • Jiecheng CHEN ,
  • Belay Mitiku DAMTEW ,
  • Xiangrong ZHU
Expand
  • Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

Received date: 06 Sep 2015

Accepted date: 11 Jul 2016

Published date: 20 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We consider the oscillatory hyper Hilbert transform Hγ,α,βf(x)=0f(xΓ(t))eitβt(1+α)dt, where Γ(t) = (t, γ(t)) in 2 is a general curve. When γ is convex, we give a simple condition on γ such that Hγ,α,β is bounded on L2 when β3α,β>0. As a corollary, under this condition, we obtain the Lp-boundedness of Hγ,α,β when 2β/(2β3α)<p<2β(3α). When Γ is a general nonconvex curve, we give some more complicated conditions on γ such that Hγ,α,β is bounded on L2. As an application, we construct a class of strictly convex curves along which Hγ,α,β is bounded on L2 only if β>2α>0.

Cite this article

Jiecheng CHEN , Belay Mitiku DAMTEW , Xiangrong ZHU . Oscillatory hyper Hilbert transforms along general curves[J]. Frontiers of Mathematics in China, 2017 , 12(2) : 281 -299 . DOI: 10.1007/s11464-016-0574-3

1
Bez N. Lp-boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves. Proc Amer Math Soc, 2007, 135(1): 151–161

DOI

2
Chandarana S. Lp-bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389–416

DOI

3
Chandarana S. Hypersigular integral operators along space curves. Preprint

4
Chen J, Fan D, Wang M, Zhu X. Lp bounds for oscillatory hyper-Hilbert transform along curves. Proc Amer Math Soc, 2008, 136(9): 3145–3153

DOI

5
Chen J, Fan D, Zhu X. Sharp L2 boundedness of the oscillatory hyper-Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(4): 653–658

DOI

6
Fabes E B, Riviére N M. Singular intervals with mixed homogeneity. Studia Math, 1966, 27: 19–38

7
Fefferman C. Inequalities for strongly singular convolution operators. Acta Math, 1970, 124: 9–36

DOI

8
Fefferman C, Stein E M. Hp Spaces of several variables. Acta Math, 1972, 129: 137–193

DOI

9
Hirschman I I. On multiplier transformations. Duke Math J, 1959, 26: 221–242

DOI

10
Laghi A N, Lyall N. Strongly singular integrals along curves. Pacific J Math, 2007, 233(2): 403–415

DOI

11
Le H V. Hypersingular integral operators along surfaces. Integral Equations Operator Theory, 2002, 44(4): 451–465

DOI

12
Nagel A, Riviére N M, Wainger S. On Hilbert transform along curves. Bull Amer Math Soc, 1974, 80(1): 106–108

DOI

13
Nagel A, Riviére N M, Wainger S. On Hilbert transform along curves II. Amer J Math, 1976, 98(2): 395–403

DOI

14
Nagel A, Vance J, Wainger S, Weinberg D. Hilbert transforms for convex curves. Duke Math J, 1983, 50(3): 735–744

DOI

15
Nagel A, Wainger S. Hilbert transforms associated with plane curves. Trans Amer Math Soc, 1976, 223: 235–252

DOI

16
Stein E M.Singular integrals, harmonic functions and differentiability properties of functions of several variables. Proc Sympos Pure Math, 1976, 10: 316–335

DOI

17
Stein E M. Harmonic Analysis Real-Variable Methods, Orthogonality and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993

18
Stein E M, Wainger S. Problems in harmonic analysis related to curvature. Bull Amer Math Soc, 1978, 84(6): 1239–1295

DOI

19
Vance J, Wainger S, Wright J. The Hilbert transform and maximal function along nonconvex curves in the plane. Rev Mat Iberoam, 1994, 10(1): 93–121

DOI

20
Wainger S. Special trigonometric series in k-dimensions. Mem Amer Math Soc, 1965, 59(3): 735–744

DOI

21
Wainger S. On certain aspects of differentiation theory. In: Topics in Modern Harmonic Analysis: Proceedings of a Seminar Held in Torino and Milano, May-June 1982, Vol II. Rome: Istituto Nazionale di Alta Matematica Francesco Severi, 1983, 677–706

22
Wainger S. Averages and singular integrals over lower dimensional sets. In: Beijing Lectures on Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 357–421

23
Wainger S. Dilations associated to flat curves. Publ Mat, 1991, 35: 251–257

DOI

24
Zielinski M. Highly Oscillatory Singular Integrals along Curves. Ph D Dissertation. Madison: University of Wisconsin-Madison, 1985

Outlines

/