Oscillatory hyper Hilbert transforms along general curves

Jiecheng CHEN, Belay Mitiku DAMTEW, Xiangrong ZHU

PDF(204 KB)
PDF(204 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (2) : 281-299. DOI: 10.1007/s11464-016-0574-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Oscillatory hyper Hilbert transforms along general curves

Author information +
History +

Abstract

We consider the oscillatory hyper Hilbert transform Hγ,α,βf(x)=0f(xΓ(t))eitβt(1+α)dt, where Γ(t) = (t, γ(t)) in 2 is a general curve. When γ is convex, we give a simple condition on γ such that Hγ,α,β is bounded on L2 when β3α,β>0. As a corollary, under this condition, we obtain the Lp-boundedness of Hγ,α,β when 2β/(2β3α)<p<2β(3α). When Γ is a general nonconvex curve, we give some more complicated conditions on γ such that Hγ,α,β is bounded on L2. As an application, we construct a class of strictly convex curves along which Hγ,α,β is bounded on L2 only if β>2α>0.

Keywords

Hilbert transform / oscillatory integral / oscillatory hyper Hilbert transform

Cite this article

Download citation ▾
Jiecheng CHEN, Belay Mitiku DAMTEW, Xiangrong ZHU. Oscillatory hyper Hilbert transforms along general curves. Front. Math. China, 2017, 12(2): 281‒299 https://doi.org/10.1007/s11464-016-0574-3

References

[1]
Bez N. Lp-boundedness for the Hilbert transform and maximal operator along a class of nonconvex curves. Proc Amer Math Soc, 2007, 135(1): 151–161
CrossRef Google scholar
[2]
Chandarana S. Lp-bounds for hypersingular integral operators along curves. Pacific J Math, 1996, 175(2): 389–416
CrossRef Google scholar
[3]
Chandarana S. Hypersigular integral operators along space curves. Preprint
[4]
Chen J, Fan D, Wang M, Zhu X. Lp bounds for oscillatory hyper-Hilbert transform along curves. Proc Amer Math Soc, 2008, 136(9): 3145–3153
CrossRef Google scholar
[5]
Chen J, Fan D, Zhu X. Sharp L2 boundedness of the oscillatory hyper-Hilbert transform along curves. Acta Math Sin (Engl Ser), 2010, 26(4): 653–658
CrossRef Google scholar
[6]
Fabes E B, Riviére N M. Singular intervals with mixed homogeneity. Studia Math, 1966, 27: 19–38
[7]
Fefferman C. Inequalities for strongly singular convolution operators. Acta Math, 1970, 124: 9–36
CrossRef Google scholar
[8]
Fefferman C, Stein E M. Hp Spaces of several variables. Acta Math, 1972, 129: 137–193
CrossRef Google scholar
[9]
Hirschman I I. On multiplier transformations. Duke Math J, 1959, 26: 221–242
CrossRef Google scholar
[10]
Laghi A N, Lyall N. Strongly singular integrals along curves. Pacific J Math, 2007, 233(2): 403–415
CrossRef Google scholar
[11]
Le H V. Hypersingular integral operators along surfaces. Integral Equations Operator Theory, 2002, 44(4): 451–465
CrossRef Google scholar
[12]
Nagel A, Riviére N M, Wainger S. On Hilbert transform along curves. Bull Amer Math Soc, 1974, 80(1): 106–108
CrossRef Google scholar
[13]
Nagel A, Riviére N M, Wainger S. On Hilbert transform along curves II. Amer J Math, 1976, 98(2): 395–403
CrossRef Google scholar
[14]
Nagel A, Vance J, Wainger S, Weinberg D. Hilbert transforms for convex curves. Duke Math J, 1983, 50(3): 735–744
CrossRef Google scholar
[15]
Nagel A, Wainger S. Hilbert transforms associated with plane curves. Trans Amer Math Soc, 1976, 223: 235–252
CrossRef Google scholar
[16]
Stein E M.Singular integrals, harmonic functions and differentiability properties of functions of several variables. Proc Sympos Pure Math, 1976, 10: 316–335
CrossRef Google scholar
[17]
Stein E M. Harmonic Analysis Real-Variable Methods, Orthogonality and Oscillatory Integrals.Princeton: Princeton Univ Press, 1993
[18]
Stein E M, Wainger S. Problems in harmonic analysis related to curvature. Bull Amer Math Soc, 1978, 84(6): 1239–1295
CrossRef Google scholar
[19]
Vance J, Wainger S, Wright J. The Hilbert transform and maximal function along nonconvex curves in the plane. Rev Mat Iberoam, 1994, 10(1): 93–121
CrossRef Google scholar
[20]
Wainger S. Special trigonometric series in k-dimensions. Mem Amer Math Soc, 1965, 59(3): 735–744
CrossRef Google scholar
[21]
Wainger S. On certain aspects of differentiation theory. In: Topics in Modern Harmonic Analysis: Proceedings of a Seminar Held in Torino and Milano, May-June 1982, Vol II. Rome: Istituto Nazionale di Alta Matematica Francesco Severi, 1983, 677–706
[22]
Wainger S. Averages and singular integrals over lower dimensional sets. In: Beijing Lectures on Harmonic Analysis. Ann of Math Stud, Vol 112. Princeton: Princeton Univ Press, 1986, 357–421
[23]
Wainger S. Dilations associated to flat curves. Publ Mat, 1991, 35: 251–257
CrossRef Google scholar
[24]
Zielinski M. Highly Oscillatory Singular Integrals along Curves. Ph D Dissertation. Madison: University of Wisconsin-Madison, 1985

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(204 KB)

Accesses

Citations

Detail

Sections
Recommended

/