RESEARCH ARTICLE

From ODE to DDE

  • Meirong ZHANG
Expand
  • Department of Mathematical Sciences and Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing 100084, China

Received date: 18 Sep 2008

Accepted date: 10 Nov 2008

Published date: 05 Sep 2009

Copyright

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, by considering ordinary differential equation (ODE) as a special case and a starting point of delay differential equation (DDE), we will show that some typical topological methods such as continuation theorems can be applied to detect some dynamics of DDE like periodic solutions. Several problems will be presented.

Cite this article

Meirong ZHANG . From ODE to DDE[J]. Frontiers of Mathematics in China, 2009 , 4(3) : 585 -598 . DOI: 10.1007/s11464-009-0034-4

1
Adams R A, Fournier J J F. Sobolev Spaces. 2nd Ed. Pure Appl Math (Amsterdam), Vol 140. Amsterdam: Elsevier/Academic Press, 2003

2
Arnold V I. Mathematical Methods of Classical Mechanics. Graduate Texts Math, Vol 60. New York-Heidelberg: Springer-Verlag, 1978

3
Capietto A, Mawhin J, Zanolin F. The coincidence degree of some functionaldifferential operators in spaces of periodic functions and related continuation theorems. In: Delay Differential Equations and Dynamical Systems (Claremont, CA, 1990). Lecture Notes Math, Vol 1475. Berlin: Springer, 1991, 76-87

4
Capietto A, Mawhin J, Zanolin F. Periodic solutions of some superlinear functional differential equations. In: Yoshizawa T, Kato J, eds. Proc Intern Symp Functional Differential Equations (Kyoto, Japan, 30 Aug–2 Sept, 1990). Singapore: World Scientific, 1991, 19-31

5
Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Lecture Notes Math, Vol 568. Berlin-New York: Springer-Verlag, 1977

6
Guo Z, Yu J. Multiplicity results for periodic solutions of delay differential equations via critical point theory. J Differential Equations, 2005, 218: 15-35

DOI

7
Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977

8
Jiang M-Y. A Landesman-Lazer type theorem for periodic solutions of the resonant asymmetric p-Laplacian equation. Acta Math Sinica, Engl Ser, 2005, 21: 1219-1228

DOI

9
Leach P G L, Andropoulos K. The Ermakov equation, a commentary. Appl Anal Discrete Math, 2008, 2: 146-157

DOI

10
Lei J, Li X, Yan P, Zhang M. Twist character of the least amplitude periodic solution of the forced pendulum. SIAM J Math Anal, 2003, 35: 844-867

DOI

11
Li J, He X. Proof and generalization of Kaplan-Yorke’s conjecture on periodic solutions of differential delay equations. Sci China, Ser A, 1999, 42: 957-964

DOI

12
Llibre J, Ortega R. On the families of periodic orbits of the Sitnikov problem. SIAM J Appl Dynam Syst, 2008, 7: 561-576

DOI

13
Mallet-Paret J, Sell G R. Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J Differential Equations, 1996, 125: 385-440

DOI

14
Mawhin J. Continuation theorems and periodic solutions of ordinary differential equations. In: Topological Methods in Differential Equations and Inclusions. Dordrecht: Kluwer, 1995, 291-375

15
Meng G, Yan P, Lin X, Zhang M. Non-degeneracy and periodic solutions of semilinear differential equations with deviation. Adv Nonlinear Stud, 2006, 6: 563-590

16
Morris G R. An infinite class of periodic solutions of x"+ 2x3= p(t). Proc Cambridge Phil Soc, 1965, 61: 157-164

DOI

17
Ortega R, Zhang M. Some optimal bounds for bifurcation values of a superlinear periodic problem. Proc Royal Soc Edinburgh, Sect A, 2005, 135: 119-132

18
Ward J R. Asymptotic conditions for periodic solutions of ordinary differential equations. Proc Amer Math Soc, 1981, 81: 415-420

DOI

19
Whyburn G T. Analytic Topology. Amer Math Soc Colloq Publ, Vol 28. New York: Amer Math Soc, 1942

20
Yan P, Zhang M. Higher order non-resonance for differential equations with singularities. Math Meth Appl Sci, 2003, 26: 1067-1074

DOI

21
Zhang M. Certain classes of potentials for p-Laplacian to be non-degenerate. Math Nachr, 2005, 278: 1823-1836

DOI

22
Zhang M. Periodic solutions of equations of Emarkov-Pinney type. Adv Nonlinear Stud, 2006, 6: 57-67

Options
Outlines

/