From ODE to DDE

Meirong Zhang

Front. Math. China ›› 2009, Vol. 4 ›› Issue (3) : 585 -598.

PDF (176KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (3) : 585 -598. DOI: 10.1007/s11464-009-0034-4
Research Article
RESEARCH ARTICLE

From ODE to DDE

Author information +
History +
PDF (176KB)

Abstract

In this paper, by considering ordinary differential equation (ODE) as a special case and a starting point of delay differential equation (DDE), we will show that some typical topological methods such as continuation theorems can be applied to detect some dynamics of DDE like periodic solutions. Several problems will be presented.

Keywords

Ordinary differential equation (ODE) / delay differential equation (DDE) / periodic solution / continuation theorem / Sobolev constant / non-degeneracy

Cite this article

Download citation ▾
Meirong Zhang. From ODE to DDE. Front. Math. China, 2009, 4(3): 585-598 DOI:10.1007/s11464-009-0034-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R. A., Fournier J. J. F. Sobolev Spaces, 2003 2 Amsterdam: Elsevier/Academic Press.

[2]

Arnold V. I. Mathematical Methods of Classical Mechanics, 1978, New York-Heidelberg: Springer-Verlag.

[3]

Capietto A., Mawhin J., Zanolin F. The coincidence degree of some functional-differential operators in spaces of periodic functions and related continuation theorems. Delay Differential Equations and Dynamical Systems (Claremont, CA, 1990), 1991, Berlin: Springer, 76-87.

[4]

Capietto A., Mawhin J., Zanolin F. Yoshizawa T., Kato J. Periodic solutions of some superlinear functional differential equations. Proc Intern Symp Functional Differential Equations (Kyoto, Japan, 30 Aug–2 Sept, 1990), 1991, Singapore: World Scientific, 19-31.

[5]

Gaines R. E., Mawhin J. L. Coincidence Degree and Nonlinear Differential Equations, 1977, Berlin-New York: Springer-Verlag.

[6]

Guo Z., Yu J. Multiplicity results for periodic solutions of delay differential equations via critical point theory. J Differential Equations, 2005, 218: 15-35.

[7]

Hale J. K. Theory of Functional Differential Equations, 1977, New York: Springer-Verlag.

[8]

Jiang M. -Y. A Landesman-Lazer type theorem for periodic solutions of the resonant asymmetric p-Laplacian equation. Acta Math Sinica, Engl Ser, 2005, 21: 1219-1228.

[9]

Leach P. G. L., Andropoulos K. The Ermakov equation, a commentary. Appl Anal Discrete Math, 2008, 2: 146-157.

[10]

Lei J., Li X., Yan P., Zhang M. Twist character of the least amplitude periodic solution of the forced pendulum. SIAM J Math Anal, 2003, 35: 844-867.

[11]

Li J., He X. Proof and generalization of Kaplan-Yorke’s conjecture on periodic solutions of differential delay equations. Sci China, Ser A, 1999, 42: 957-964.

[12]

Llibre J., Ortega R. On the families of periodic orbits of the Sitnikov problem. SIAM J Appl Dynam Syst, 2008, 7: 561-576.

[13]

Mallet-Paret J., Sell G. R. Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J Differential Equations, 1996, 125: 385-440.

[14]

Mawhin J. Continuation theorems and periodic solutions of ordinary differential equations. Topological Methods in Differential Equations and Inclusions, 1995, Dordrecht: Kluwer, 291-375.

[15]

Meng G., Yan P., Lin X., Zhang M. Non-degeneracy and periodic solutions of semilinear differential equations with deviation. Adv Nonlinear Stud, 2006, 6: 563-590.

[16]

Morris G. R. An infinite class of periodic solutions of x″ + 2x3 = p(t). Proc Cambridge Phil Soc, 1965, 61: 157-164.

[17]

Ortega R., Zhang M. Some optimal bounds for bifurcation values of a superlinear periodic problem. Proc Royal Soc Edinburgh, Sect A, 2005, 135: 119-132.

[18]

Ward J. R. Asymptotic conditions for periodic solutions of ordinary differential equations. Proc Amer Math Soc, 1981, 81: 415-420.

[19]

Whyburn G. T. Analytic Topology, 1942, New York: Amer Math Soc.

[20]

Yan P., Zhang M. Higher order non-resonance for differential equations with singularities. Math Meth Appl Sci, 2003, 26: 1067-1074.

[21]

Zhang M. Certain classes of potentials for p-Laplacian to be non-degenerate. Math Nachr, 2005, 278: 1823-1836.

[22]

Zhang M. Periodic solutions of equations of Emarkov-Pinney type. Adv Nonlinear Stud, 2006, 6: 57-67.

AI Summary AI Mindmap
PDF (176KB)

904

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/