From ODE to DDE

Meirong ZHANG

PDF(176 KB)
PDF(176 KB)
Front. Math. China ›› 2009, Vol. 4 ›› Issue (3) : 585-598. DOI: 10.1007/s11464-009-0034-4
RESEARCH ARTICLE
RESEARCH ARTICLE

From ODE to DDE

Author information +
History +

Abstract

In this paper, by considering ordinary differential equation (ODE) as a special case and a starting point of delay differential equation (DDE), we will show that some typical topological methods such as continuation theorems can be applied to detect some dynamics of DDE like periodic solutions. Several problems will be presented.

Keywords

Ordinary differential equation (ODE) / delay differential equation (DDE) / periodic solution / continuation theorem / Sobolev constant / non-degeneracy

Cite this article

Download citation ▾
Meirong ZHANG. From ODE to DDE. Front Math Chin, 2009, 4(3): 585‒598 https://doi.org/10.1007/s11464-009-0034-4

References

[1]
Adams R A, Fournier J J F. Sobolev Spaces. 2nd Ed. Pure Appl Math (Amsterdam), Vol 140. Amsterdam: Elsevier/Academic Press, 2003
[2]
Arnold V I. Mathematical Methods of Classical Mechanics. Graduate Texts Math, Vol 60. New York-Heidelberg: Springer-Verlag, 1978
[3]
Capietto A, Mawhin J, Zanolin F. The coincidence degree of some functionaldifferential operators in spaces of periodic functions and related continuation theorems. In: Delay Differential Equations and Dynamical Systems (Claremont, CA, 1990). Lecture Notes Math, Vol 1475. Berlin: Springer, 1991, 76-87
[4]
Capietto A, Mawhin J, Zanolin F. Periodic solutions of some superlinear functional differential equations. In: Yoshizawa T, Kato J, eds. Proc Intern Symp Functional Differential Equations (Kyoto, Japan, 30 Aug–2 Sept, 1990). Singapore: World Scientific, 1991, 19-31
[5]
Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations. Lecture Notes Math, Vol 568. Berlin-New York: Springer-Verlag, 1977
[6]
Guo Z, Yu J. Multiplicity results for periodic solutions of delay differential equations via critical point theory. J Differential Equations, 2005, 218: 15-35
CrossRef Google scholar
[7]
Hale J K. Theory of Functional Differential Equations. New York: Springer-Verlag, 1977
[8]
Jiang M-Y. A Landesman-Lazer type theorem for periodic solutions of the resonant asymmetric p-Laplacian equation. Acta Math Sinica, Engl Ser, 2005, 21: 1219-1228
CrossRef Google scholar
[9]
Leach P G L, Andropoulos K. The Ermakov equation, a commentary. Appl Anal Discrete Math, 2008, 2: 146-157
CrossRef Google scholar
[10]
Lei J, Li X, Yan P, Zhang M. Twist character of the least amplitude periodic solution of the forced pendulum. SIAM J Math Anal, 2003, 35: 844-867
CrossRef Google scholar
[11]
Li J, He X. Proof and generalization of Kaplan-Yorke’s conjecture on periodic solutions of differential delay equations. Sci China, Ser A, 1999, 42: 957-964
CrossRef Google scholar
[12]
Llibre J, Ortega R. On the families of periodic orbits of the Sitnikov problem. SIAM J Appl Dynam Syst, 2008, 7: 561-576
CrossRef Google scholar
[13]
Mallet-Paret J, Sell G R. Systems of differential delay equations: Floquet multipliers and discrete Lyapunov functions. J Differential Equations, 1996, 125: 385-440
CrossRef Google scholar
[14]
Mawhin J. Continuation theorems and periodic solutions of ordinary differential equations. In: Topological Methods in Differential Equations and Inclusions. Dordrecht: Kluwer, 1995, 291-375
[15]
Meng G, Yan P, Lin X, Zhang M. Non-degeneracy and periodic solutions of semilinear differential equations with deviation. Adv Nonlinear Stud, 2006, 6: 563-590
[16]
Morris G R. An infinite class of periodic solutions of x"+ 2x3= p(t). Proc Cambridge Phil Soc, 1965, 61: 157-164
CrossRef Google scholar
[17]
Ortega R, Zhang M. Some optimal bounds for bifurcation values of a superlinear periodic problem. Proc Royal Soc Edinburgh, Sect A, 2005, 135: 119-132
[18]
Ward J R. Asymptotic conditions for periodic solutions of ordinary differential equations. Proc Amer Math Soc, 1981, 81: 415-420
CrossRef Google scholar
[19]
Whyburn G T. Analytic Topology. Amer Math Soc Colloq Publ, Vol 28. New York: Amer Math Soc, 1942
[20]
Yan P, Zhang M. Higher order non-resonance for differential equations with singularities. Math Meth Appl Sci, 2003, 26: 1067-1074
CrossRef Google scholar
[21]
Zhang M. Certain classes of potentials for p-Laplacian to be non-degenerate. Math Nachr, 2005, 278: 1823-1836
CrossRef Google scholar
[22]
Zhang M. Periodic solutions of equations of Emarkov-Pinney type. Adv Nonlinear Stud, 2006, 6: 57-67

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(176 KB)

Accesses

Citations

Detail

Sections
Recommended

/