RESEARCH ARTICLE

Strongly lifting modules and strongly dual Rickart modules

  • Yongduo WANG
Expand
  • Department of Applied Mathematics, Lanzhou University of Technology, Lanzhou 730050, China

Received date: 14 Aug 2015

Accepted date: 03 Feb 2016

Published date: 01 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

The concepts of strongly lifting modules and strongly dual Rickart modules are introduced and their properties are studied and relations between them are given in this paper. It is shown that a strongly lifting module has the strongly summand sum property and the generalized Hopfian property, and a ring R is a strongly regular ring if and only if RR is a strongly dual Rickart module, if and only if aRis a fully invariant direct summand of RRfor every a ∈ R.

Cite this article

Yongduo WANG . Strongly lifting modules and strongly dual Rickart modules[J]. Frontiers of Mathematics in China, 2017 , 12(1) : 219 -229 . DOI: 10.1007/s11464-016-0599-7

1
Anderson F W, Fuller K R. Rings and Categories of Modules. 2nd ed. Berlin: Springer, 1992

DOI

2
Atani S E, Khoramdel M, Hesari S D P. On strongly extending modules. Kyungpook Math J, 2014, 54: 237–247

DOI

3
Birkenmeier G F, Müller B J, Rizvi S T. Modules in which every fully invariant submodule is essential in a direct summand. Comm Algebra, 2002, 30: 1395–1415

DOI

4
Birkenmeier G F, Park J K, Rizvi S T. Modules with fully invariant submodules essential in fully invariant summands. Comm Algebra, 2002, 30: 1833–1852

DOI

5
Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules: Supplements and Projectivity in Module Theory. Front Mathematics. Basel: Birkhäuser, 2006

6
Ganesan L, Vanaja N. Modules for which every submodule has a unique coclosure. Comm Algebra, 2002, 30: 2355–2377

DOI

7
Ghorbani A, Haghany A. Generalized Hopfian modules. J Algebra, 2002, 255: 324–341

DOI

8
Keskin D. On lifting modules. Comm Algebra, 2002, 28: 3427–3440

DOI

9
Keskin D. Discrete and quasi-discrete modules. Comm Algebra, 2002, 30: 5273–5282

DOI

10
Kosan T, Keskin D. H-supplemented duo modules. J Algebra Appl, 2007, 6: 965–971

DOI

11
Lee G Y, Rizvi S T, Roman C S. Dual Rickart modules. Comm Algebra, 2011, 39: 4036–4058

DOI

12
Mohamed S H, Müller B J. Continuous and Discrete Modules. London Math Soc Lecture Note Ser, Vol 147. Cambridge: Cambridge Univ Press, 1990

DOI

13
Özcan A C, Harmanci A, Smith P F. Duo modules. Glasg Math J, 2006, 48: 533–545

14
Rangaswamy K M. Abelian groups with endomorphic images of special types. J Algebra, 1967, 6: 271–280

DOI

15
Talebi Y, Vanaja N. The torsion theory cogenerated by M-small modules. Comm Algebra, 2002, 30: 1449–1460

DOI

16
Wang Y D, Wu D J. On H-supplemented modules. Comm Algebra, 2012, 40: 3679–3689

DOI

Outlines

/