Strongly lifting modules and strongly dual Rickart modules

Yongduo WANG

PDF(140 KB)
PDF(140 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 219-229. DOI: 10.1007/s11464-016-0599-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Strongly lifting modules and strongly dual Rickart modules

Author information +
History +

Abstract

The concepts of strongly lifting modules and strongly dual Rickart modules are introduced and their properties are studied and relations between them are given in this paper. It is shown that a strongly lifting module has the strongly summand sum property and the generalized Hopfian property, and a ring R is a strongly regular ring if and only if RR is a strongly dual Rickart module, if and only if aRis a fully invariant direct summand of RRfor every a ∈ R.

Keywords

Lifting module / strongly lifting module / dual Rickart module / strongly dual Rickart module

Cite this article

Download citation ▾
Yongduo WANG. Strongly lifting modules and strongly dual Rickart modules. Front. Math. China, 2017, 12(1): 219‒229 https://doi.org/10.1007/s11464-016-0599-7

References

[1]
Anderson F W, Fuller K R. Rings and Categories of Modules. 2nd ed. Berlin: Springer, 1992
CrossRef Google scholar
[2]
Atani S E, Khoramdel M, Hesari S D P. On strongly extending modules. Kyungpook Math J, 2014, 54: 237–247
CrossRef Google scholar
[3]
Birkenmeier G F, Müller B J, Rizvi S T. Modules in which every fully invariant submodule is essential in a direct summand. Comm Algebra, 2002, 30: 1395–1415
CrossRef Google scholar
[4]
Birkenmeier G F, Park J K, Rizvi S T. Modules with fully invariant submodules essential in fully invariant summands. Comm Algebra, 2002, 30: 1833–1852
CrossRef Google scholar
[5]
Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules: Supplements and Projectivity in Module Theory. Front Mathematics. Basel: Birkhäuser, 2006
[6]
Ganesan L, Vanaja N. Modules for which every submodule has a unique coclosure. Comm Algebra, 2002, 30: 2355–2377
CrossRef Google scholar
[7]
Ghorbani A, Haghany A. Generalized Hopfian modules. J Algebra, 2002, 255: 324–341
CrossRef Google scholar
[8]
Keskin D. On lifting modules. Comm Algebra, 2002, 28: 3427–3440
CrossRef Google scholar
[9]
Keskin D. Discrete and quasi-discrete modules. Comm Algebra, 2002, 30: 5273–5282
CrossRef Google scholar
[10]
Kosan T, Keskin D. H-supplemented duo modules. J Algebra Appl, 2007, 6: 965–971
CrossRef Google scholar
[11]
Lee G Y, Rizvi S T, Roman C S. Dual Rickart modules. Comm Algebra, 2011, 39: 4036–4058
CrossRef Google scholar
[12]
Mohamed S H, Müller B J. Continuous and Discrete Modules. London Math Soc Lecture Note Ser, Vol 147. Cambridge: Cambridge Univ Press, 1990
CrossRef Google scholar
[13]
Özcan A C, Harmanci A, Smith P F. Duo modules. Glasg Math J, 2006, 48: 533–545
[14]
Rangaswamy K M. Abelian groups with endomorphic images of special types. J Algebra, 1967, 6: 271–280
CrossRef Google scholar
[15]
Talebi Y, Vanaja N. The torsion theory cogenerated by M-small modules. Comm Algebra, 2002, 30: 1449–1460
CrossRef Google scholar
[16]
Wang Y D, Wu D J. On H-supplemented modules. Comm Algebra, 2012, 40: 3679–3689
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(140 KB)

Accesses

Citations

Detail

Sections
Recommended

/