Strongly lifting modules and strongly dual Rickart modules

Yongduo WANG

Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 219 -229.

PDF (140KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 219 -229. DOI: 10.1007/s11464-016-0599-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Strongly lifting modules and strongly dual Rickart modules

Author information +
History +
PDF (140KB)

Abstract

The concepts of strongly lifting modules and strongly dual Rickart modules are introduced and their properties are studied and relations between them are given in this paper. It is shown that a strongly lifting module has the strongly summand sum property and the generalized Hopfian property, and a ring R is a strongly regular ring if and only if RR is a strongly dual Rickart module, if and only if aRis a fully invariant direct summand of RRfor every a ∈ R.

Keywords

Lifting module / strongly lifting module / dual Rickart module / strongly dual Rickart module

Cite this article

Download citation ▾
Yongduo WANG. Strongly lifting modules and strongly dual Rickart modules. Front. Math. China, 2017, 12(1): 219-229 DOI:10.1007/s11464-016-0599-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson F W, Fuller K R. Rings and Categories of Modules. 2nd ed. Berlin: Springer, 1992

[2]

Atani S E, Khoramdel M, Hesari S D P. On strongly extending modules. Kyungpook Math J, 2014, 54: 237–247

[3]

Birkenmeier G F, Müller B J, Rizvi S T. Modules in which every fully invariant submodule is essential in a direct summand. Comm Algebra, 2002, 30: 1395–1415

[4]

Birkenmeier G F, Park J K, Rizvi S T. Modules with fully invariant submodules essential in fully invariant summands. Comm Algebra, 2002, 30: 1833–1852

[5]

Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules: Supplements and Projectivity in Module Theory. Front Mathematics. Basel: Birkhäuser, 2006

[6]

Ganesan L, Vanaja N. Modules for which every submodule has a unique coclosure. Comm Algebra, 2002, 30: 2355–2377

[7]

Ghorbani A, Haghany A. Generalized Hopfian modules. J Algebra, 2002, 255: 324–341

[8]

Keskin D. On lifting modules. Comm Algebra, 2002, 28: 3427–3440

[9]

Keskin D. Discrete and quasi-discrete modules. Comm Algebra, 2002, 30: 5273–5282

[10]

Kosan T, Keskin D. H-supplemented duo modules. J Algebra Appl, 2007, 6: 965–971

[11]

Lee G Y, Rizvi S T, Roman C S. Dual Rickart modules. Comm Algebra, 2011, 39: 4036–4058

[12]

Mohamed S H, Müller B J. Continuous and Discrete Modules. London Math Soc Lecture Note Ser, Vol 147. Cambridge: Cambridge Univ Press, 1990

[13]

Özcan A C, Harmanci A, Smith P F. Duo modules. Glasg Math J, 2006, 48: 533–545

[14]

Rangaswamy K M. Abelian groups with endomorphic images of special types. J Algebra, 1967, 6: 271–280

[15]

Talebi Y, Vanaja N. The torsion theory cogenerated by M-small modules. Comm Algebra, 2002, 30: 1449–1460

[16]

Wang Y D, Wu D J. On H-supplemented modules. Comm Algebra, 2012, 40: 3679–3689

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (140KB)

1149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/