RESEARCH ARTICLE

Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras

  • Bingliang SHEN 1 ,
  • Ling LIU , 2
Expand
  • 1. Shanghai University of Finance and Economics Zhejiang College, Jinhua 321013, China
  • 2. College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China

Received date: 24 Nov 2015

Accepted date: 12 Mar 2016

Published date: 01 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

*Abstract:Let (H,α) be a monoidal Hom-Hopf algebra. In this paper, we will study the category of Hom-Yetter-Drinfeld modules. First, we show that the category of left-left Hom-Yetter-Drinfeld modules HH H Y D is isomorphic to the center of the category of left (H,α)-Hom-modules. Also, by the center construction, we get that the categories of left-left, left-right, right-left, and right-right Hom-Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Second, we prove that the category of finitely generated projective left-left Hom-Yetter-Drinfeld modules has left and right duality.

Cite this article

Bingliang SHEN , Ling LIU . Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras[J]. Frontiers of Mathematics in China, 2017 , 12(1) : 177 -197 . DOI: 10.1007/s11464-016-0594-z

1
Bulacu D, Caenepeel S, Panaite F. Yetter-Drinfeld categories for quasi-Hopf algebras. Comm Algebra, 2006, 34: 1–35

DOI

2
Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras. Comm Algebra, 2011, 39: 2216–2240 (2011)

DOI

3
Caenepeel S, Wang D G, Yin Y M. Yetter-Drinfeld modules over weak bialgebras. Ann Univ Ferrara Sez VII Sci Mat, 2005, 51: 69–98

4
Chen Y Y, Wang Z W, Zhang L Y. Integrals for monoidal Hom-Hopf algebras and their applications. J Math Phys, 2013, 54: 073515

DOI

5
Gohr A. On Hom-algebras with surjective twisting. J Algebra, 2010, 324: 1483–1491

DOI

6
Joyal A, Street R. Tortile Yang-Baxter operators in tensor categories. J Pure Appl Algebra, 1991, 71: 43–51

DOI

7
Joyal A, Street R. Braided tensor categories. Adv Math, 1993, 102: 20–78

DOI

8
Kassel C. Quantum Groups. Grad Texts in Math, Vol 155. Berlin: Springer, 1995

DOI

9
Liu L, Shen B L. Radford’s biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras. J Math Phys, 2014, 55: 031701

DOI

10
Majid S. Representations, duals and quantum doubles of monoidal categories. Rend Circ Mat Palermo (2) Suppl, 1991, 26: 197–206

11
Makhlouf A, Panaite F. Yetter-Drinfeld modules for Hom-bialgebras. J Math Phys, 2014, 55: 013501

DOI

12
Makhlouf A, Silvestrov S D. Hom-algebras structures. J Gen Lie Theory Appl, 2008, 2: 52–64

DOI

13
Makhlouf A, Silvestrov S D. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In: Silvestrov S, Paal E, Abramov V, Stolin A, eds. Generalized Lie Theory in Mathematics, Physics and Beyond. Berlin: Springer, 2009, 189–206

DOI

14
Makhlouf A, Silvestrov S D. Hom-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9(4): 553–589

DOI

15
Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993

DOI

16
Yau D. Hom-algebras and homology. J Lie Theory, 2009, 19: 409–421

17
Yau D. Hom-bialgebras and comodule algebras. Int Electron J Algebra, 2010, 8: 45–64

Outlines

/