Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras

Bingliang SHEN , Ling LIU

Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 177 -197.

PDF (205KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 177 -197. DOI: 10.1007/s11464-016-0594-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras

Author information +
History +
PDF (205KB)

Abstract

*Abstract:Let (H,α) be a monoidal Hom-Hopf algebra. In this paper, we will study the category of Hom-Yetter-Drinfeld modules. First, we show that the category of left-left Hom-Yetter-Drinfeld modules HH H Y D is isomorphic to the center of the category of left (H,α)-Hom-modules. Also, by the center construction, we get that the categories of left-left, left-right, right-left, and right-right Hom-Yetter-Drinfeld modules are isomorphic as braided monoidal categories. Second, we prove that the category of finitely generated projective left-left Hom-Yetter-Drinfeld modules has left and right duality.

Keywords

Monoidal Hom-Hopf algebra / Hom-Yetter-Drinfeld module / center construction / duality

Cite this article

Download citation ▾
Bingliang SHEN, Ling LIU. Center construction and duality of category of Hom-Yetter-Drinfeld modules over monoidal Hom-Hopf algebras. Front. Math. China, 2017, 12(1): 177-197 DOI:10.1007/s11464-016-0594-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bulacu D, Caenepeel S, Panaite F. Yetter-Drinfeld categories for quasi-Hopf algebras. Comm Algebra, 2006, 34: 1–35

[2]

Caenepeel S, Goyvaerts I. Monoidal Hom-Hopf algebras. Comm Algebra, 2011, 39: 2216–2240 (2011)

[3]

Caenepeel S, Wang D G, Yin Y M. Yetter-Drinfeld modules over weak bialgebras. Ann Univ Ferrara Sez VII Sci Mat, 2005, 51: 69–98

[4]

Chen Y Y, Wang Z W, Zhang L Y. Integrals for monoidal Hom-Hopf algebras and their applications. J Math Phys, 2013, 54: 073515

[5]

Gohr A. On Hom-algebras with surjective twisting. J Algebra, 2010, 324: 1483–1491

[6]

Joyal A, Street R. Tortile Yang-Baxter operators in tensor categories. J Pure Appl Algebra, 1991, 71: 43–51

[7]

Joyal A, Street R. Braided tensor categories. Adv Math, 1993, 102: 20–78

[8]

Kassel C. Quantum Groups. Grad Texts in Math, Vol 155. Berlin: Springer, 1995

[9]

Liu L, Shen B L. Radford’s biproducts and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras. J Math Phys, 2014, 55: 031701

[10]

Majid S. Representations, duals and quantum doubles of monoidal categories. Rend Circ Mat Palermo (2) Suppl, 1991, 26: 197–206

[11]

Makhlouf A, Panaite F. Yetter-Drinfeld modules for Hom-bialgebras. J Math Phys, 2014, 55: 013501

[12]

Makhlouf A, Silvestrov S D. Hom-algebras structures. J Gen Lie Theory Appl, 2008, 2: 52–64

[13]

Makhlouf A, Silvestrov S D. Hom-Lie admissible Hom-coalgebras and Hom-Hopf algebras. In: Silvestrov S, Paal E, Abramov V, Stolin A, eds. Generalized Lie Theory in Mathematics, Physics and Beyond. Berlin: Springer, 2009, 189–206

[14]

Makhlouf A, Silvestrov S D. Hom-algebras and Hom-coalgebras. J Algebra Appl, 2010, 9(4): 553–589

[15]

Montgomery S. Hopf Algebras and Their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993

[16]

Yau D. Hom-algebras and homology. J Lie Theory, 2009, 19: 409–421

[17]

Yau D. Hom-bialgebras and comodule algebras. Int Electron J Algebra, 2010, 8: 45–64

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (205KB)

751

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/