RESEARCH ARTICLE

Gorenstein injective sheaves

  • Sergio ESTRADA , 1 ,
  • Alina IACOB 2
Expand
  • 1. Departamento de Matemáticas, Universidad de Murcia, Murcia 30100, Spain
  • 2. Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA 30460, USA

Received date: 25 Nov 2015

Accepted date: 04 Mar 2016

Published date: 01 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We define Gorenstein injective quasi-coherent sheaves, and prove that the notion is local in case the scheme is Gorenstein. We also give a new characterization of a Gorenstein scheme in terms of the total acyclicity of every acyclic complex of injective quasi-coherent modules.

Cite this article

Sergio ESTRADA , Alina IACOB . Gorenstein injective sheaves[J]. Frontiers of Mathematics in China, 2017 , 12(1) : 87 -95 . DOI: 10.1007/s11464-016-0588-x

1
Christensen L, Jorgensen D. Tate (co)homology via pinched complexes. Trans Amer Math Soc, 2014, 366: 667–689

DOI

2
Conrad B. Grothendieck Duality and Base Change. Lecture Notes in Math, Vol 1750. Berlin: Springer-Verlag, 2000

DOI

3
Enochs E E, Estrada S. Relative homological algebra in the category of quasi-coherent sheaves. Adv Math, 2005, 194: 284–295

DOI

4
Enochs E E, Estrada S, García-Rozas J R. Gorenstein categories and Tate cohomology on projective schemes. Math Nachr, 2008, 281: 525–540

DOI

5
Enochs E E, Estrada S, Iacob A. Balance with unbounded complexes. Bull Lond Math Soc, 2012, 44: 439–442

DOI

6
Enochs E E, Jenda O. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter, 2000

DOI

7
Gillespie J. Kaplansky classes and derived categories. Math Z, 2007, 257: 811–843

DOI

8
Hartshorne R. Residues and Duality. Lecture Notes in Math, Vol 20. Berlin: Springer-Verlag, 1966

DOI

9
Holm H. Gorenstein homological dimensions. J Pure Appl Algebra, 2004, 189: 167–193

DOI

10
Krause H. The stable derived category of a Noetherian scheme. Compos Math, 2005, 141(5): 1128–1162

DOI

11
Murfet D. Modules over a scheme

12
Murfet D, Salarian S. Totally acyclic complexes over noetherian schemes. Adv Math, 2011, 226: 1096–1133

DOI

13
Neeman A. The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J Amer Math Soc, 1996, 9: 205–236

DOI

14
Tarrío L A, López A J, Rodríguez M P, Gonsalves M J V. The derived category of quasicoherent sheaves and axiomatic stable homotopy. Adv Math, 2008, 218(4): 1224–1252

DOI

Outlines

/