Gorenstein injective sheaves

Sergio ESTRADA, Alina IACOB

PDF(143 KB)
PDF(143 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 87-95. DOI: 10.1007/s11464-016-0588-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Gorenstein injective sheaves

Author information +
History +

Abstract

We define Gorenstein injective quasi-coherent sheaves, and prove that the notion is local in case the scheme is Gorenstein. We also give a new characterization of a Gorenstein scheme in terms of the total acyclicity of every acyclic complex of injective quasi-coherent modules.

Keywords

Gorenstein injective / Noetherian scheme

Cite this article

Download citation ▾
Sergio ESTRADA, Alina IACOB. Gorenstein injective sheaves. Front. Math. China, 2017, 12(1): 87‒95 https://doi.org/10.1007/s11464-016-0588-x

References

[1]
Christensen L, Jorgensen D. Tate (co)homology via pinched complexes. Trans Amer Math Soc, 2014, 366: 667–689
CrossRef Google scholar
[2]
Conrad B. Grothendieck Duality and Base Change. Lecture Notes in Math, Vol 1750. Berlin: Springer-Verlag, 2000
CrossRef Google scholar
[3]
Enochs E E, Estrada S. Relative homological algebra in the category of quasi-coherent sheaves. Adv Math, 2005, 194: 284–295
CrossRef Google scholar
[4]
Enochs E E, Estrada S, García-Rozas J R. Gorenstein categories and Tate cohomology on projective schemes. Math Nachr, 2008, 281: 525–540
CrossRef Google scholar
[5]
Enochs E E, Estrada S, Iacob A. Balance with unbounded complexes. Bull Lond Math Soc, 2012, 44: 439–442
CrossRef Google scholar
[6]
Enochs E E, Jenda O. Relative Homological Algebra. de Gruyter Exp Math, Vol 30. Berlin: Walter de Gruyter, 2000
CrossRef Google scholar
[7]
Gillespie J. Kaplansky classes and derived categories. Math Z, 2007, 257: 811–843
CrossRef Google scholar
[8]
Hartshorne R. Residues and Duality. Lecture Notes in Math, Vol 20. Berlin: Springer-Verlag, 1966
CrossRef Google scholar
[9]
Holm H. Gorenstein homological dimensions. J Pure Appl Algebra, 2004, 189: 167–193
CrossRef Google scholar
[10]
Krause H. The stable derived category of a Noetherian scheme. Compos Math, 2005, 141(5): 1128–1162
CrossRef Google scholar
[11]
Murfet D. Modules over a scheme
[12]
Murfet D, Salarian S. Totally acyclic complexes over noetherian schemes. Adv Math, 2011, 226: 1096–1133
CrossRef Google scholar
[13]
Neeman A. The Grothendieck duality theorem via Bousfield’s techniques and Brown representability. J Amer Math Soc, 1996, 9: 205–236
CrossRef Google scholar
[14]
Tarrío L A, López A J, Rodríguez M P, Gonsalves M J V. The derived category of quasicoherent sheaves and axiomatic stable homotopy. Adv Math, 2008, 218(4): 1224–1252
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(143 KB)

Accesses

Citations

Detail

Sections
Recommended

/