RESEARCH ARTICLE

Twisted partial coactions of Hopf algebras

  • Quanguo CHEN ,
  • Dingguo WANG ,
  • Xiaodan KANG
Expand
  • School of Mathematical Sciences, Qufu Normal University, Qufu 273165, China

Received date: 09 Sep 2015

Accepted date: 22 Mar 2016

Published date: 01 Feb 2017

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.

Cite this article

Quanguo CHEN , Dingguo WANG , Xiaodan KANG . Twisted partial coactions of Hopf algebras[J]. Frontiers of Mathematics in China, 2017 , 12(1) : 63 -86 . DOI: 10.1007/s11464-016-0597-9

1
Agore A L. Coquasitriangular structures for extensions of Hopf algebras. Applications. Glasg Math J, 2013, 55: 201–215

DOI

2
Alves M M S, Batista E. Partial Hopf actions, partial invariants and a Morita context. Algebra Discrete Math, 2009, 3: 1–19

3
Alves M M S, Batista E. Enveloping actions for partial Hopf actions. Comm Algebra, 2010, 38: 2872–2902

DOI

4
Alves M M S, Batista E. Globalization theorems for partial Hopf (co)actions and some of their applications. Contemp Math, 2011, 537: 13–30

DOI

5
Alves M M S, Batista E, Dokuchaev M, Paques A. Twisted partial actions of Hopf algebras. Israel J Math, 2013, 197: 263–308

DOI

6
Bagio D, Lazzarin J, Paques A. Crossed products by twisted partial actions: separability, semisimplicity and Frobenius properties. Comm Algebra, 2010, 38: 496–508

DOI

7
Beggs E, Majid S. Quasitriangular and differential structures on bicrossproduct Hopf algebras. J Algebra, 1999, 219: 682–727

DOI

8
Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras. Trans Amer Math Soc, 1986, 298: 671–711

DOI

9
Caenepeel S, Janssen K. Partial (co)actions of Hopf algebras and partial Hopf-Galois theory. Comm Algebra, 2008, 36: 2923–2946

DOI

10
Chen H X. Quasitriangular structures of bicrossed coproducts. J Algebra, 1998, 204: 504–531

DOI

11
Chen Q G, Wang D G. Constructing quasitriangular Hopf algebras. Comm Algebra, 2015, 43(4): 1698–1722

DOI

12
Chen Q G, Wang D G. A class of coquasitriangular Hopf group algebras. Comm Algebra, 2016, 44(1): 310–335

DOI

13
Dascalescu S, Militaru G, Raianu S. Crossed coproducts and cleft coextensions. Comm Algebra, 1996, 24: 1229–1243

DOI

14
Doi Y. Equivalent crossed products for a Hopf algebra. Comm Algebra, 1989, 17(12): 3053–3085

DOI

15
Dokuchaev M, Exel R, Piccione P. Partial representations and partial group algebras. J Algebra, 2000, 226: 505–532

DOI

16
Dokuchaev M, Exel R. Associativity of crossed products by partial actions, enveloping actions and partial representations. Trans Amer Math Soc, 2005, 357: 1931–1952

DOI

17
Dokuchaev M, Exel R, Simón J J. Crossed products by twisted partial actions and graded algebras. J Algebra, 2008, 320: 3278–3310

DOI

18
Dokuchaev M, Exel R, Simón J J. Globalization of twisted partial actions. Trans Amer Math Soc, 2010, 362(8): 4137–4160

DOI

19
Dokuchaev M, Ferrero M, Paques A. Partial actions and Galois theory. J Pure Appl Algebra, 2007, 208: 77–87

DOI

20
Dokuchaev M, Novikov B. Partial projective representations and partial actions. J Pure Appl Algebra, 2010, 214: 251–268

DOI

21
Dokuchaev M, Novikov B. Partial projective representations and partial actions II. J Pure Appl Algebra, 2012, 216: 438–455

DOI

22
Drinfeld V. Quantum Groups. Proc Int Congr Math Berkeley, Vol 1. 1987, 798–820

23
Exel R. Circle actions on C∗-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences. J Funct Anal, 1994, 122: 361–401

DOI

24
Exel R. Twisted partial actions: a classification of regular C ∗-algebraic bundles. Proc Lond Math Soc, 1997, 74: 417–443

DOI

25
Exel R. Partial actions of groups and actions of inverse semigroups. Proc Amer Math Soc, 1998, 126: 3481–3494

DOI

26
Jiao Z M. The quasitriangular structures for a class of T-smash product Hopf algebras. Israel J Math, 2005, 146: 125–148

DOI

27
Lin L P. Crossed coproducts of Hopf algebras. Comm Algebra, 1982, 10: 1–17

DOI

28
McClanahan K. K-theory for partial crossed products by discrete groups. J Funct Anal, 1995, 130: 77–117

DOI

29
Montgomery S. Hopf Algebras and their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993

DOI

Outlines

/