Twisted partial coactions of Hopf algebras

Quanguo CHEN, Dingguo WANG, Xiaodan KANG

PDF(212 KB)
PDF(212 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 63-86. DOI: 10.1007/s11464-016-0597-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Twisted partial coactions of Hopf algebras

Author information +
History +

Abstract

In this paper, the notion of a twisted partial Hopf coaction is introduced. The conditions on partial cocycles are established in order to construct partial crossed coproducts. Then the classification of partial crossed coproducts is discussed. Finally, some necessary and sufficient conditions for a class of partial crossed coproducts to be quasitriangular bialgebras are given.

Keywords

Hopf algebra / partial crossed coproduct / quasitriangular structure

Cite this article

Download citation ▾
Quanguo CHEN, Dingguo WANG, Xiaodan KANG. Twisted partial coactions of Hopf algebras. Front. Math. China, 2017, 12(1): 63‒86 https://doi.org/10.1007/s11464-016-0597-9

References

[1]
Agore A L. Coquasitriangular structures for extensions of Hopf algebras. Applications. Glasg Math J, 2013, 55: 201–215
CrossRef Google scholar
[2]
Alves M M S, Batista E. Partial Hopf actions, partial invariants and a Morita context. Algebra Discrete Math, 2009, 3: 1–19
[3]
Alves M M S, Batista E. Enveloping actions for partial Hopf actions. Comm Algebra, 2010, 38: 2872–2902
CrossRef Google scholar
[4]
Alves M M S, Batista E. Globalization theorems for partial Hopf (co)actions and some of their applications. Contemp Math, 2011, 537: 13–30
CrossRef Google scholar
[5]
Alves M M S, Batista E, Dokuchaev M, Paques A. Twisted partial actions of Hopf algebras. Israel J Math, 2013, 197: 263–308
CrossRef Google scholar
[6]
Bagio D, Lazzarin J, Paques A. Crossed products by twisted partial actions: separability, semisimplicity and Frobenius properties. Comm Algebra, 2010, 38: 496–508
CrossRef Google scholar
[7]
Beggs E, Majid S. Quasitriangular and differential structures on bicrossproduct Hopf algebras. J Algebra, 1999, 219: 682–727
CrossRef Google scholar
[8]
Blattner R J, Cohen M, Montgomery S. Crossed products and inner actions of Hopf algebras. Trans Amer Math Soc, 1986, 298: 671–711
CrossRef Google scholar
[9]
Caenepeel S, Janssen K. Partial (co)actions of Hopf algebras and partial Hopf-Galois theory. Comm Algebra, 2008, 36: 2923–2946
CrossRef Google scholar
[10]
Chen H X. Quasitriangular structures of bicrossed coproducts. J Algebra, 1998, 204: 504–531
CrossRef Google scholar
[11]
Chen Q G, Wang D G. Constructing quasitriangular Hopf algebras. Comm Algebra, 2015, 43(4): 1698–1722
CrossRef Google scholar
[12]
Chen Q G, Wang D G. A class of coquasitriangular Hopf group algebras. Comm Algebra, 2016, 44(1): 310–335
CrossRef Google scholar
[13]
Dascalescu S, Militaru G, Raianu S. Crossed coproducts and cleft coextensions. Comm Algebra, 1996, 24: 1229–1243
CrossRef Google scholar
[14]
Doi Y. Equivalent crossed products for a Hopf algebra. Comm Algebra, 1989, 17(12): 3053–3085
CrossRef Google scholar
[15]
Dokuchaev M, Exel R, Piccione P. Partial representations and partial group algebras. J Algebra, 2000, 226: 505–532
CrossRef Google scholar
[16]
Dokuchaev M, Exel R. Associativity of crossed products by partial actions, enveloping actions and partial representations. Trans Amer Math Soc, 2005, 357: 1931–1952
CrossRef Google scholar
[17]
Dokuchaev M, Exel R, Simón J J. Crossed products by twisted partial actions and graded algebras. J Algebra, 2008, 320: 3278–3310
CrossRef Google scholar
[18]
Dokuchaev M, Exel R, Simón J J. Globalization of twisted partial actions. Trans Amer Math Soc, 2010, 362(8): 4137–4160
CrossRef Google scholar
[19]
Dokuchaev M, Ferrero M, Paques A. Partial actions and Galois theory. J Pure Appl Algebra, 2007, 208: 77–87
CrossRef Google scholar
[20]
Dokuchaev M, Novikov B. Partial projective representations and partial actions. J Pure Appl Algebra, 2010, 214: 251–268
CrossRef Google scholar
[21]
Dokuchaev M, Novikov B. Partial projective representations and partial actions II. J Pure Appl Algebra, 2012, 216: 438–455
CrossRef Google scholar
[22]
Drinfeld V. Quantum Groups. Proc Int Congr Math Berkeley, Vol 1. 1987, 798–820
[23]
Exel R. Circle actions on C∗-algebras, partial automorphisms and generalized Pimsner-Voiculescu exact sequences. J Funct Anal, 1994, 122: 361–401
CrossRef Google scholar
[24]
Exel R. Twisted partial actions: a classification of regular C ∗-algebraic bundles. Proc Lond Math Soc, 1997, 74: 417–443
CrossRef Google scholar
[25]
Exel R. Partial actions of groups and actions of inverse semigroups. Proc Amer Math Soc, 1998, 126: 3481–3494
CrossRef Google scholar
[26]
Jiao Z M. The quasitriangular structures for a class of T-smash product Hopf algebras. Israel J Math, 2005, 146: 125–148
CrossRef Google scholar
[27]
Lin L P. Crossed coproducts of Hopf algebras. Comm Algebra, 1982, 10: 1–17
CrossRef Google scholar
[28]
McClanahan K. K-theory for partial crossed products by discrete groups. J Funct Anal, 1995, 130: 77–117
CrossRef Google scholar
[29]
Montgomery S. Hopf Algebras and their Actions on Rings. CBMS Reg Conf Ser Math, No 82. Providence: Amer Math Soc, 1993
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(212 KB)

Accesses

Citations

Detail

Sections
Recommended

/