Frontiers of Mathematics in China >
Tensor products of tilting modules
Received date: 30 Nov 2015
Accepted date: 16 Apr 2016
Published date: 01 Feb 2017
Copyright
We consider whether the tilting properties of a tilting A-module T and a tilting B-module T ' can convey to their tensor product T ⊗T '. The main result is that T ⊗ T ' turns out to be an (n+ m)-tilting A ⊗ B-module, where T is an m-tilting A-module and T ' is an n-tilting B-module.
Key words: Tensor product; tilting module; n-tilting module; endomorphism algebra
Meixiang CHEN , Qinghua CHEN . Tensor products of tilting modules[J]. Frontiers of Mathematics in China, 2017 , 12(1) : 51 -62 . DOI: 10.1007/s11464-016-0592-1
1 |
Anderson F W, Fuller K R. Ring and Categories of Modules. 2nd ed. New York: Springer-Verlag, 1992
|
2 |
Assem I, Simson D, Skowronski A. Elements of the Representation Theory of Associative Algebras I: Techniques of Representation Theory.Cambridge: Cambridge Univ Press, 2006
|
3 |
Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra, 2004, 273(1): 359–372
|
4 |
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. In: Representation Theory II. Lecture Notes in Math, Vol 832. New York: Springer-Verlag, 1980, 103–169
|
5 |
Cartan H, Eilenberg S. Homological Algebra.Princeton: Princeton Univ Press, 1956
|
6 |
Chen M X, Chen Q H. Tensor products of triangular monomial algebras. J Fujian Normal Univ Nat Sci, 2007, 23(6): 19–23
|
7 |
Christopher C G. Tensor products of Young modules. J Algebra, 2012, 366: 12–34
|
8 |
Eilenberg S, Rosenberg A, Zalinsky D. On the dimension of modules and algebras VIII. Nagoya Math J, 1957, 12: 71–93
|
9 |
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. LondonMath Soc Lecture Note Ser, 119. Cambridge: Cambridge Univ Press, 1988
|
10 |
Happel D, Ringel C. Tilted algebras. Trans Amer Math Soc, 1982, 274: 399–443
|
11 |
Hügel A L, Coelho F U. Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239–250
|
12 |
Miyashita Y. Tilting modules of finite projective dimension. Math Z, 1986, 193: 113–146
|
13 |
Rickard J. Morita theory for derived categories. J Lond Math Soc, 1989, 39: 436–456
|
14 |
Rotman J J. An Introduction to Homological Algebra. 2nd ed.New York: Springer, 2009
|
15 |
Yang J W. Tensor products of strongly graded vertex algebras and their modules. J Pure Appl Algebra, 2013, 217(2): 348–363
|
16 |
Zhou B X. On the tensor product of left modules and their homological dimensions. J Math Res Exposition, 1981, 1: 17–24
|
17 |
Zhou B X. Homological Algebra.Beijing: Science Press, 1988 (in Chinese)
|
/
〈 | 〉 |