Tensor products of tilting modules

Meixiang CHEN, Qinghua CHEN

PDF(155 KB)
PDF(155 KB)
Front. Math. China ›› 2017, Vol. 12 ›› Issue (1) : 51-62. DOI: 10.1007/s11464-016-0592-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Tensor products of tilting modules

Author information +
History +

Abstract

We consider whether the tilting properties of a tilting A-module T and a tilting B-module T ' can convey to their tensor product TT '. The main result is that TT ' turns out to be an (n+ m)-tilting AB-module, where T is an m-tilting A-module and T ' is an n-tilting B-module.

Keywords

Tensor product / tilting module / n-tilting module / endomorphism algebra

Cite this article

Download citation ▾
Meixiang CHEN, Qinghua CHEN. Tensor products of tilting modules. Front. Math. China, 2017, 12(1): 51‒62 https://doi.org/10.1007/s11464-016-0592-1

References

[1]
Anderson F W, Fuller K R. Ring and Categories of Modules. 2nd ed. New York: Springer-Verlag, 1992
CrossRef Google scholar
[2]
Assem I, Simson D, Skowronski A. Elements of the Representation Theory of Associative Algebras I: Techniques of Representation Theory.Cambridge: Cambridge Univ Press, 2006
CrossRef Google scholar
[3]
Bazzoni S. A characterization of n-cotilting and n-tilting modules. J Algebra, 2004, 273(1): 359–372
CrossRef Google scholar
[4]
Brenner S, Butler M C R. Generalizations of the Bernstein-Gelfand-Ponomarev reflection functors. In: Representation Theory II. Lecture Notes in Math, Vol 832. New York: Springer-Verlag, 1980, 103–169
CrossRef Google scholar
[5]
Cartan H, Eilenberg S. Homological Algebra.Princeton: Princeton Univ Press, 1956
[6]
Chen M X, Chen Q H. Tensor products of triangular monomial algebras. J Fujian Normal Univ Nat Sci, 2007, 23(6): 19–23
[7]
Christopher C G. Tensor products of Young modules. J Algebra, 2012, 366: 12–34
CrossRef Google scholar
[8]
Eilenberg S, Rosenberg A, Zalinsky D. On the dimension of modules and algebras VIII. Nagoya Math J, 1957, 12: 71–93
CrossRef Google scholar
[9]
Happel D. Triangulated Categories in the Representation Theory of Finite Dimensional Algebras. LondonMath Soc Lecture Note Ser, 119. Cambridge: Cambridge Univ Press, 1988
CrossRef Google scholar
[10]
Happel D, Ringel C. Tilted algebras. Trans Amer Math Soc, 1982, 274: 399–443
CrossRef Google scholar
[11]
Hügel A L, Coelho F U. Infinitely generated tilting modules of finite projective dimension. Forum Math, 2001, 13: 239–250
CrossRef Google scholar
[12]
Miyashita Y. Tilting modules of finite projective dimension. Math Z, 1986, 193: 113–146
CrossRef Google scholar
[13]
Rickard J. Morita theory for derived categories. J Lond Math Soc, 1989, 39: 436–456
CrossRef Google scholar
[14]
Rotman J J. An Introduction to Homological Algebra. 2nd ed.New York: Springer, 2009
CrossRef Google scholar
[15]
Yang J W. Tensor products of strongly graded vertex algebras and their modules. J Pure Appl Algebra, 2013, 217(2): 348–363
CrossRef Google scholar
[16]
Zhou B X. On the tensor product of left modules and their homological dimensions. J Math Res Exposition, 1981, 1: 17–24
[17]
Zhou B X. Homological Algebra.Beijing: Science Press, 1988 (in Chinese)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(155 KB)

Accesses

Citations

Detail

Sections
Recommended

/