RESEARCH ARTICLE

Analysis and geometry of Floer theory of Landau-Ginzburg model on n

  • Wenfeng JIANG
Expand
  • Department of Mathematics, Nanjing University, Nanjing 210093, China

Received date: 04 Nov 2014

Accepted date: 08 Jul 2015

Published date: 18 Oct 2016

Copyright

2015 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

This article studies the Floer theory of Landau-Ginzburg (LG) model on n: We perturb the Kähler form within a xed Kähler class to guarantee the transversal intersection of Lefschetz thimbles. The C0 estimate for solutions of the LG Floer equation can be derived then by our analysis tools. The Fredholm property is guaranteed by all these results.

Cite this article

Wenfeng JIANG . Analysis and geometry of Floer theory of Landau-Ginzburg model on n[J]. Frontiers of Mathematics in China, 2016 , 11(6) : 1569 -1602 . DOI: 10.1007/s11464-016-0502-6

1
Fan H, Jarvis T, Ruan Y. The Witten equation and its virtual fundamental cycle. 2007, arXiv: 0712–4025

2
Fan H, Jarvis T, Ruan Y. Geometry and analysis of spin equations. Comm Pure Appl Math, 2008, 61: 715–788

DOI

3
Fan H, Jarvis T, Ruan Y. The Witten equation, mirror symmetry and quantum singularity theory. Ann Math, 2013, 178: 1–106

DOI

4
Fan H, Jiang W. Floer Theory of Landau-Ginzburg model on Kähler manifolds (in preparation)

5
Floer A. A relative Morse index for the symplectic action. Comm Pure Appl Math, 1988, 41(4): 393–407

DOI

6
Floer A. The unregularized gradient ow of the symplectic action. Comm Pure Appl Math, 1988, 41(6): 775–813

DOI

7
Floer A. Morse theory for Lagrangian intersections. J Differential Geom, 1988, 28(3): 513–547

8
Fukaya K, Oh Y G, Ohta H, Ono K. Lagrangian Floer theory on compact toric manifolds I. 2008, arXiv: 0802–1703

9
Fukaya K, Oh Y G, Ohta H, Ono K. Lagrangian Interesection Floer Theory: Anomaly and Obstruction. AMS/IP Studies in Advanced Mathematics, Vol 46. Providence /Somerville: Amer Math Soc/International Press, 2010

10
Gaiotto D, Moore G, Witten E. Algebra of the infrared: string eld theoretic structures in massive N = (2; 2) eld theory in two dimensions. arXiv: 1506–04087

11
Haydys A. Fukaya-Seidel category and gauge theory. 2010, arXiv: 1010–2353

12
Hori K, Iqbal A, Vafa C. D-branes and mirror symmetry. 2000, arXiv: hep-th/0005247

13
Kapranov M, Kontsevich M, Soibelman Y. Algebra of the infrared and secondary polytopes. 2014, arXiv: 1408–2673

14
Kapustin A, Li Y. D-branes in Landau-Ginzburg models and algebraic geometry. J High Energy Phys, 2003, (12): 005

15
Kontsevich M. Homological algebra of mirror symmetry. 1994, arXiv: alg-geom /9411018

16
McDuff D, Salamon D. J-Holomorphic Curves and Symplectic Topology. Amer Math Soc Colloquium Publications, Vol 52. Providence: Amer Math Soc, 2004

DOI

17
Oh Y G. Symplectic Topology and Floer Homology.http://www.math.wisc.edu/~oh/all.pdf

18
Orlov D. Triangulated categories of singularities and D-branes in Landau-Ginzburg models. 2003, arXiv: math/0302304

19
Orlov D. Matrix factorizations for nonaffine LG-models. Math Ann, 2012, 353(1): 95–108

DOI

20
Perko L. Differential Equations and Dynamical Systems. 3rd ed. Berlin: Springer, 2006

21
Robbin J, Salamon D. The spectral ow and the Maslov index. Bull Lond Math Soc, 1995, 27(1): 1–33

DOI

22
Ruan Y. Lefschetz thimbles and LG-Floer theory. Personal Communication, 2013

23
Seidel P. More about vanishing cycles and mutation. 2000, arXiv: math/0010032.

24
Seidel P. Vanishing cycles and mutation. In: European Congress of Mathematics. Basel: Birkhäuser, 2001, 65–85

DOI

25
Seidel P. Fukaya Categories and Picard-Lefschetz Theory.Zürich: European Math Soc, 2008

26
Seidel P. Fukaya A-structures associated to Lefschetz brations. I. J Symplectic Geom, 2012, 10(3): 325–388

27
Seidel P. Fukaya A-structures associated to Lefschetz brations. II. 2014, arXiv: 1404–1352

28
Sheridan N. Homological mirror symmetry for Calabi-Yau hypersurfaces in projective space. 2011, arXiv: 1111–0632

Outlines

/