RESEARCH ARTICLE

Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations

  • Jin CHENG
Expand
  • Department of Mathematics, University of Science and Technology of China, Hefei 230026, China

Received date: 17 Mar 2016

Accepted date: 22 Apr 2016

Published date: 18 Oct 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We construct fermionic-bosonic representations for a class of generalized B(m, n), C(n), D(m, n)-graded Lie superalgebras coordinatized by quantum tori with nontrivial central extensions.

Cite this article

Jin CHENG . Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations[J]. Frontiers of Mathematics in China, 2016 , 11(6) : 1451 -1470 . DOI: 10.1007/s11464-016-0543-x

1
Allison B N, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997

2
Allison B N, Benkart G, Gao Y. Central extensions of Lie algebras graded by finite root systems. Math Ann, 2000, 316(3): 499–527

DOI

3
Allison B N, Benkart G, Gao Y. Lie Algebras Graded by the Root Systems BCr, r≥2. Mem Amer Math Soc, Vol 158, No 751. Providence: Amer Math Soc, 2002

4
Benkart G, Elduque A. Lie superalgebras graded by the root systems C(n), D(m, n), D(2, 1; a), F(4), G(3). Canad Math Bull, 2002, 45(4): 509–524

DOI

5
Benkart G, Elduque A. Lie superalgebras graded by the root system B(m, n).Selecta Math (NS), 2003, 9: 313–360

DOI

6
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126(1): 1–45

DOI

7
Berman S, Gao Y, Krylyuk Y. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J Funct Anal, 1996, 135(2): 339–389

DOI

8
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108(2): 323–347

DOI

9
Chen H, Gao Y. B(0,N)-graded Lie superalgebras coordinatized by quantum tori. Sci China Ser A, 2006, 49: 545–566

DOI

10
Chen H, Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Algebra, 2007, 308(2): 1740–1752

DOI

11
Feingold A J, Frenkel I B. Classical affine algebras. Adv Math, 1985, 56(2): 117–172

DOI

12
Frenkel I B. Spinor representations of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77(11): 6303–6306

DOI

13
Gao Y. Fermionic and bosonic representations of the extended affine Lie algebra glN(ℂq) ˜. Canad Math Bull, 2002, 45(4): 623–633

DOI

14
Jing N H, Misra K C. Fermionic realization of toroidal Lie algebras of classical types. J Algebra, 2010, 324(2): 183–194

DOI

15
Kac V G. Lie superalgebras. Advances in Math, 1977, 26(1): 8–96.

DOI

16
Kac V G, Peterson D H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78(6): 3308–3312

DOI

17
Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194: 225–245

DOI

18
Manin Y I. Topics in Noncommutative Geometry. M. B. Porter Lectures. Princeton: Princeton University Press, 1991

19
Martinez C, Zelmanov E. Lie superalgebras graded by P(n) and Q(n).Proc Natl Acad Sci USA, 2003, 100(14): 8130–8137

DOI

20
Scheunert M. The Theory of Lie Superalgebras: An Introduction. Berlin: Springer-Verlag, 1979

DOI

Outlines

/