Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations
Jin CHENG
Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations
We construct fermionic-bosonic representations for a class of generalized B(m, n), C(n), D(m, n)-graded Lie superalgebras coordinatized by quantum tori with nontrivial central extensions.
Root system graded Lie superalgebras / quantum tori / fermionicbosonic representations
[1] |
Allison B N, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997
|
[2] |
Allison B N, Benkart G, Gao Y. Central extensions of Lie algebras graded by finite root systems. Math Ann, 2000, 316(3): 499–527
CrossRef
Google scholar
|
[3] |
Allison B N, Benkart G, Gao Y. Lie Algebras Graded by the Root Systems BCr, r≥2. Mem Amer Math Soc, Vol 158, No 751. Providence: Amer Math Soc, 2002
|
[4] |
Benkart G, Elduque A. Lie superalgebras graded by the root systems C(n), D(m, n), D(2, 1; a), F(4), G(3). Canad Math Bull, 2002, 45(4): 509–524
CrossRef
Google scholar
|
[5] |
Benkart G, Elduque A. Lie superalgebras graded by the root system B(m, n).Selecta Math (NS), 2003, 9: 313–360
CrossRef
Google scholar
|
[6] |
Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126(1): 1–45
CrossRef
Google scholar
|
[7] |
Berman S, Gao Y, Krylyuk Y. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J Funct Anal, 1996, 135(2): 339–389
CrossRef
Google scholar
|
[8] |
Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108(2): 323–347
CrossRef
Google scholar
|
[9] |
Chen H, Gao Y. B(0,N)-graded Lie superalgebras coordinatized by quantum tori. Sci China Ser A, 2006, 49: 545–566
CrossRef
Google scholar
|
[10] |
Chen H, Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Algebra, 2007, 308(2): 1740–1752
CrossRef
Google scholar
|
[11] |
Feingold A J, Frenkel I B. Classical affine algebras. Adv Math, 1985, 56(2): 117–172
CrossRef
Google scholar
|
[12] |
Frenkel I B. Spinor representations of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77(11): 6303–6306
CrossRef
Google scholar
|
[13] |
Gao Y. Fermionic and bosonic representations of the extended affine Lie algebra
CrossRef
Google scholar
|
[14] |
Jing N H, Misra K C. Fermionic realization of toroidal Lie algebras of classical types. J Algebra, 2010, 324(2): 183–194
CrossRef
Google scholar
|
[15] |
Kac V G. Lie superalgebras. Advances in Math, 1977, 26(1): 8–96.
CrossRef
Google scholar
|
[16] |
Kac V G, Peterson D H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78(6): 3308–3312
CrossRef
Google scholar
|
[17] |
Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194: 225–245
CrossRef
Google scholar
|
[18] |
Manin Y I. Topics in Noncommutative Geometry. M. B. Porter Lectures. Princeton: Princeton University Press, 1991
|
[19] |
Martinez C, Zelmanov E. Lie superalgebras graded by P(n) and Q(n).Proc Natl Acad Sci USA, 2003, 100(14): 8130–8137
CrossRef
Google scholar
|
[20] |
Scheunert M. The Theory of Lie Superalgebras: An Introduction. Berlin: Springer-Verlag, 1979
CrossRef
Google scholar
|
/
〈 | 〉 |