Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations

Jin CHENG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (6) : 1451 -1470.

PDF (217KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (6) : 1451 -1470. DOI: 10.1007/s11464-016-0543-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations

Author information +
History +
PDF (217KB)

Abstract

We construct fermionic-bosonic representations for a class of generalized B(m, n), C(n), D(m, n)-graded Lie superalgebras coordinatized by quantum tori with nontrivial central extensions.

Keywords

Root system graded Lie superalgebras / quantum tori / fermionicbosonic representations

Cite this article

Download citation ▾
Jin CHENG. Generalized B(m, n), C(n),D(m, n)-graded Lie superalgebras arising from fermionic-bosonic representations. Front. Math. China, 2016, 11(6): 1451-1470 DOI:10.1007/s11464-016-0543-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allison B N, Azam S, Berman S, Gao Y, Pianzola A. Extended Affine Lie Algebras and their Root Systems. Mem Amer Math Soc, Vol 126, No 603. Providence: Amer Math Soc, 1997

[2]

Allison B N, Benkart G, Gao Y. Central extensions of Lie algebras graded by finite root systems. Math Ann, 2000, 316(3): 499–527

[3]

Allison B N, Benkart G, Gao Y. Lie Algebras Graded by the Root Systems BCr, r≥2. Mem Amer Math Soc, Vol 158, No 751. Providence: Amer Math Soc, 2002

[4]

Benkart G, Elduque A. Lie superalgebras graded by the root systems C(n), D(m, n), D(2, 1; a), F(4), G(3). Canad Math Bull, 2002, 45(4): 509–524

[5]

Benkart G, Elduque A. Lie superalgebras graded by the root system B(m, n).Selecta Math (NS), 2003, 9: 313–360

[6]

Benkart G, Zelmanov E. Lie algebras graded by finite root systems and intersection matrix algebras. Invent Math, 1996, 126(1): 1–45

[7]

Berman S, Gao Y, Krylyuk Y. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J Funct Anal, 1996, 135(2): 339–389

[8]

Berman S, Moody R V. Lie algebras graded by finite root systems and the intersection matrix algebras of Slodowy. Invent Math, 1992, 108(2): 323–347

[9]

Chen H, Gao Y. B(0,N)-graded Lie superalgebras coordinatized by quantum tori. Sci China Ser A, 2006, 49: 545–566

[10]

Chen H, Gao Y. BCN-graded Lie algebras arising from fermionic representations. J Algebra, 2007, 308(2): 1740–1752

[11]

Feingold A J, Frenkel I B. Classical affine algebras. Adv Math, 1985, 56(2): 117–172

[12]

Frenkel I B. Spinor representations of affine Lie algebras. Proc Natl Acad Sci USA, 1980, 77(11): 6303–6306

[13]

Gao Y. Fermionic and bosonic representations of the extended affine Lie algebra glN(ℂq) ˜. Canad Math Bull, 2002, 45(4): 623–633

[14]

Jing N H, Misra K C. Fermionic realization of toroidal Lie algebras of classical types. J Algebra, 2010, 324(2): 183–194

[15]

Kac V G. Lie superalgebras. Advances in Math, 1977, 26(1): 8–96.

[16]

Kac V G, Peterson D H. Spin and wedge representations of infinite-dimensional Lie algebras and groups. Proc Natl Acad Sci USA, 1981, 78(6): 3308–3312

[17]

Lau M. Bosonic and fermionic representations of Lie algebra central extensions. Adv Math, 2005, 194: 225–245

[18]

Manin Y I. Topics in Noncommutative Geometry. M. B. Porter Lectures. Princeton: Princeton University Press, 1991

[19]

Martinez C, Zelmanov E. Lie superalgebras graded by P(n) and Q(n).Proc Natl Acad Sci USA, 2003, 100(14): 8130–8137

[20]

Scheunert M. The Theory of Lie Superalgebras: An Introduction. Berlin: Springer-Verlag, 1979

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (217KB)

1001

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/