SURVEY ARTICLE

Spaces and moduli spaces of Riemannian metrics

  • Wilderich TUSCHMANN
Expand
  • Karlsruher Institut für Technologie (KIT), Fakultät für Mathematik, Institut für Algebra und Geometrie, Arbeitsgruppe Differentialgeometrie, Englerstrase 2, D-76131 Karlsruhe, Germany

Received date: 16 May 2016

Accepted date: 24 Jul 2016

Published date: 23 Sep 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

These notes present and survey results about spaces and moduli spaces of complete Riemannian metrics with curvature bounds on open and closed manifolds, here focussing mainly on connectedness and disconnectedness properties. They also discuss several open problems and questions in the field.

Cite this article

Wilderich TUSCHMANN . Spaces and moduli spaces of Riemannian metrics[J]. Frontiers of Mathematics in China, 2016 , 11(5) : 1335 -1343 . DOI: 10.1007/s11464-016-0576-1

1
Belegradek I, Farrell F T, Kapovitch V. Space of non-negatively curved manifolds and pseudoisotopies. J Differential Geom (to appear), arXiv: 1501.03475

2
Belegradek I, Hu J. Connectedness properties of the space of complete non-negatively curved planes. Math Ann, 2015, 362: 1273–1286

DOI

3
Belegradek I, Kwasik S, Schultz R. Moduli spaces of non-negative sectional curvature and non-unique souls. J Differential Geom, 2011, 89: 49–86

4
Botvinnik B, Ebert J, Randal-Williams O. Infinite loop spaces and positive scalar curvature. arXiv: 1411.7408

5
Botvinnik B, Gilkey P. The eta invariant and metrics of positive scalar curvature. Math Ann, 1995, 302(3): 507–517

DOI

6
Botvinnik B, Gilkey P. Metrics of positive scalar curvature on spherical space forms. Canad J Math, 1996, 48(1): 64–80

DOI

7
Botvinnik B, Hanke B, Schick T, Walsh M. Homotopy groups of the moduli space of metrics of positive scalar curvature. Geom Topol, 2010, 14: 2047–2076

DOI

8
Carr R. Construction of manifolds of positive scalar curvature. Trans Amer Math Soc, 1988, 307(1): 63–74

DOI

9
Cerf J. Sur les difféomorphismes de la sphère de dimension trois (Γ4= 0). Lecture Notes in Math, Vol 53. Berlin: Springer-Verlag, 1968

DOI

10
Chen B L, Huang X T. Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four-manifolds. Math Ann (to appear)

DOI

11
Chernysh V. On the homotopy type of the space R+(M). Preprint, arXiv: GT/0405235

12
Codá Marques F. Deforming three-manifolds with positive scalar curvature. Ann of Math (2), 2012, 176(2): 815–863

13
Crowley D, Schick T. The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature. Geom Topol, 2013, 17: 1773–1790

DOI

14
Dessai A, Klaus St, Tuschmann W. Nonconnected Moduli Spaces of Nonnegative Sectional Curvature Metrics on Simply Connected Manifolds. Preprint, 2016, arXiv: 1601.04877

15
Farrell F T, Ontaneda P. The Teichmüller space of pinched negatively curved metrics on a hyperbolic manifold is not contractible. Ann of Math (2), 2009, 170(1): 45–65

16
Farrell F T, Ontaneda P. The moduli space of negatively curved metrics of a hyperbolic manifold. J Topol, 2010, 3(3): 561–577

DOI

17
Farrell F T, Ontaneda P. On the topology of the space of negatively curved metrics. J Differential Geom, 2010, 86(2): 273–301

18
Gajer P. Riemannian metrics of positive scalar curvature on compact manifolds with boundary. Ann Global Anal Geom, 1987, 5(3): 179–191

DOI

19
Gromov M, Lawson H B Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ Math Inst Hautes Études Sci, 1983, 58: 83–196

DOI

20
Hanke B, Schick T, Steimle W. The space of metrics of positive scalar curvature. Publ Math Inst Hautes Études Sci, 2014, 120: 335–367

DOI

21
Hitchin N. Harmonic spinors. Adv Math, 1974, 14: 1–55

DOI

22
Kapovitch V, Petrunin A, Tuschmann W. Non-negative pinching, moduli spaces and bundles with infinitely many souls. J Differential Geom, 2005, 71(3): 365–383

23
Kreck M, Stolz S. Nonconnected moduli spaces of positive sectional curvature metrics. J Amer Math Soc, 1993, 6: 825–850

DOI

24
Lawson H B Jr, Michelsohn M-L. Spin Geometry. Princeton: Princeton Univ Press, 1989

25
Leichtnam E, Piazza P. On higher eta-invariants and metrics of positive scalar curvature. K-Theory, 2001, 24(4): 341–359

DOI

26
Lohkamp J. Curvature h-principles. Ann of Math, 1995, 142: 457–498

DOI

27
Piazza P, Schick Th. Groups with torsion, bordism and rho invariants. Pacific J Math, 2007, 232(2): 355–378

DOI

28
Piazza P, Schick Th. Rho classes, index theory and Stolz’ positive scalar curvature sequence. J Topology, 2014, 7(4): 965–1004

DOI

29
Rosenberg J, Stolz S. Metrics of positive scalar curvature and connections with surgery. In: Cappell S, Ranicki A, Rosenberg J, eds. Surveys on Surgery Theory, Vol 2. Ann of Math Stud, Vol 149. Princeton: Princeton Univ Press, 2001, 353–386

DOI

30
Ruberman D. Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants. Geom Topol, 2001, 5: 895–924

DOI

31
Tuschmann W, Wraith D. Moduli Spaces of Riemannian Metrics. Oberwolfach Seminars, Vol 46. Basel: Birkhäuser, 2015

DOI

32
Walsh M. Metrics of Positive Scalar Curvature and Generalized Morse Functions, Part I. Mem Amer Math Soc, Vol 209, No 983. Providence: Amer Math Soc, 2011

33
Walsh M. Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics. Proc Amer Math Soc, 2013, 141(7): 2475–2484

DOI

34
Walsh M. H-spaces, loop spaces and the space of positive scalar curvature metrics on the sphere. Geom Topol, 2014, 18(4): 2189–2243

DOI

35
Wang M, Ziller W. Einstein metrics on principal torus bundles. J Differential Geom, 1990, 31(1): 215–248

36
Weyl H. Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement. Vierteljahrsschr Naturforsch Ges Zür, 1916, 61: 40–72

37
Wraith D J. On the moduli space of positive Ricci curvature metrics on homotopy spheres. Geom Topol, 2011, 15: 1983–2015

DOI

38
Wraith D J. Non-negative versus positive scalar curvature. Preprint, 2016, arXiv: 1607.00657

Outlines

/