Spaces and moduli spaces of Riemannian metrics

Wilderich TUSCHMANN

Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1335 -1343.

PDF (139KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1335 -1343. DOI: 10.1007/s11464-016-0576-1
SURVEY ARTICLE
SURVEY ARTICLE

Spaces and moduli spaces of Riemannian metrics

Author information +
History +
PDF (139KB)

Abstract

These notes present and survey results about spaces and moduli spaces of complete Riemannian metrics with curvature bounds on open and closed manifolds, here focussing mainly on connectedness and disconnectedness properties. They also discuss several open problems and questions in the field.

Keywords

Riemannian metrics / moduli spaces / sectional curvature / positive Ricci curvature / positive scalar curvature

Cite this article

Download citation ▾
Wilderich TUSCHMANN. Spaces and moduli spaces of Riemannian metrics. Front. Math. China, 2016, 11(5): 1335-1343 DOI:10.1007/s11464-016-0576-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belegradek I, Farrell F T, Kapovitch V. Space of non-negatively curved manifolds and pseudoisotopies. J Differential Geom (to appear), arXiv: 1501.03475

[2]

Belegradek I, Hu J. Connectedness properties of the space of complete non-negatively curved planes. Math Ann, 2015, 362: 1273–1286

[3]

Belegradek I, Kwasik S, Schultz R. Moduli spaces of non-negative sectional curvature and non-unique souls. J Differential Geom, 2011, 89: 49–86

[4]

Botvinnik B, Ebert J, Randal-Williams O. Infinite loop spaces and positive scalar curvature. arXiv: 1411.7408

[5]

Botvinnik B, Gilkey P. The eta invariant and metrics of positive scalar curvature. Math Ann, 1995, 302(3): 507–517

[6]

Botvinnik B, Gilkey P. Metrics of positive scalar curvature on spherical space forms. Canad J Math, 1996, 48(1): 64–80

[7]

Botvinnik B, Hanke B, Schick T, Walsh M. Homotopy groups of the moduli space of metrics of positive scalar curvature. Geom Topol, 2010, 14: 2047–2076

[8]

Carr R. Construction of manifolds of positive scalar curvature. Trans Amer Math Soc, 1988, 307(1): 63–74

[9]

Cerf J. Sur les difféomorphismes de la sphère de dimension trois (Γ4= 0). Lecture Notes in Math, Vol 53. Berlin: Springer-Verlag, 1968

[10]

Chen B L, Huang X T. Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four-manifolds. Math Ann (to appear)

[11]

Chernysh V. On the homotopy type of the space R+(M). Preprint, arXiv: GT/0405235

[12]

Codá Marques F. Deforming three-manifolds with positive scalar curvature. Ann of Math (2), 2012, 176(2): 815–863

[13]

Crowley D, Schick T. The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature. Geom Topol, 2013, 17: 1773–1790

[14]

Dessai A, Klaus St, Tuschmann W. Nonconnected Moduli Spaces of Nonnegative Sectional Curvature Metrics on Simply Connected Manifolds. Preprint, 2016, arXiv: 1601.04877

[15]

Farrell F T, Ontaneda P. The Teichmüller space of pinched negatively curved metrics on a hyperbolic manifold is not contractible. Ann of Math (2), 2009, 170(1): 45–65

[16]

Farrell F T, Ontaneda P. The moduli space of negatively curved metrics of a hyperbolic manifold. J Topol, 2010, 3(3): 561–577

[17]

Farrell F T, Ontaneda P. On the topology of the space of negatively curved metrics. J Differential Geom, 2010, 86(2): 273–301

[18]

Gajer P. Riemannian metrics of positive scalar curvature on compact manifolds with boundary. Ann Global Anal Geom, 1987, 5(3): 179–191

[19]

Gromov M, Lawson H B Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ Math Inst Hautes Études Sci, 1983, 58: 83–196

[20]

Hanke B, Schick T, Steimle W. The space of metrics of positive scalar curvature. Publ Math Inst Hautes Études Sci, 2014, 120: 335–367

[21]

Hitchin N. Harmonic spinors. Adv Math, 1974, 14: 1–55

[22]

Kapovitch V, Petrunin A, Tuschmann W. Non-negative pinching, moduli spaces and bundles with infinitely many souls. J Differential Geom, 2005, 71(3): 365–383

[23]

Kreck M, Stolz S. Nonconnected moduli spaces of positive sectional curvature metrics. J Amer Math Soc, 1993, 6: 825–850

[24]

Lawson H B Jr, Michelsohn M-L. Spin Geometry. Princeton: Princeton Univ Press, 1989

[25]

Leichtnam E, Piazza P. On higher eta-invariants and metrics of positive scalar curvature. K-Theory, 2001, 24(4): 341–359

[26]

Lohkamp J. Curvature h-principles. Ann of Math, 1995, 142: 457–498

[27]

Piazza P, Schick Th. Groups with torsion, bordism and rho invariants. Pacific J Math, 2007, 232(2): 355–378

[28]

Piazza P, Schick Th. Rho classes, index theory and Stolz’ positive scalar curvature sequence. J Topology, 2014, 7(4): 965–1004

[29]

Rosenberg J, Stolz S. Metrics of positive scalar curvature and connections with surgery. In: Cappell S, Ranicki A, Rosenberg J, eds. Surveys on Surgery Theory, Vol 2. Ann of Math Stud, Vol 149. Princeton: Princeton Univ Press, 2001, 353–386

[30]

Ruberman D. Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants. Geom Topol, 2001, 5: 895–924

[31]

Tuschmann W, Wraith D. Moduli Spaces of Riemannian Metrics. Oberwolfach Seminars, Vol 46. Basel: Birkhäuser, 2015

[32]

Walsh M. Metrics of Positive Scalar Curvature and Generalized Morse Functions, Part I. Mem Amer Math Soc, Vol 209, No 983. Providence: Amer Math Soc, 2011

[33]

Walsh M. Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics. Proc Amer Math Soc, 2013, 141(7): 2475–2484

[34]

Walsh M. H-spaces, loop spaces and the space of positive scalar curvature metrics on the sphere. Geom Topol, 2014, 18(4): 2189–2243

[35]

Wang M, Ziller W. Einstein metrics on principal torus bundles. J Differential Geom, 1990, 31(1): 215–248

[36]

Weyl H. Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement. Vierteljahrsschr Naturforsch Ges Zür, 1916, 61: 40–72

[37]

Wraith D J. On the moduli space of positive Ricci curvature metrics on homotopy spheres. Geom Topol, 2011, 15: 1983–2015

[38]

Wraith D J. Non-negative versus positive scalar curvature. Preprint, 2016, arXiv: 1607.00657

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (139KB)

986

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/