Spaces and moduli spaces of Riemannian metrics

Wilderich TUSCHMANN

PDF(139 KB)
PDF(139 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1335-1343. DOI: 10.1007/s11464-016-0576-1
SURVEY ARTICLE
SURVEY ARTICLE

Spaces and moduli spaces of Riemannian metrics

Author information +
History +

Abstract

These notes present and survey results about spaces and moduli spaces of complete Riemannian metrics with curvature bounds on open and closed manifolds, here focussing mainly on connectedness and disconnectedness properties. They also discuss several open problems and questions in the field.

Keywords

Riemannian metrics / moduli spaces / sectional curvature / positive Ricci curvature / positive scalar curvature

Cite this article

Download citation ▾
Wilderich TUSCHMANN. Spaces and moduli spaces of Riemannian metrics. Front. Math. China, 2016, 11(5): 1335‒1343 https://doi.org/10.1007/s11464-016-0576-1

References

[1]
Belegradek I, Farrell F T, Kapovitch V. Space of non-negatively curved manifolds and pseudoisotopies. J Differential Geom (to appear), arXiv: 1501.03475
[2]
Belegradek I, Hu J. Connectedness properties of the space of complete non-negatively curved planes. Math Ann, 2015, 362: 1273–1286
CrossRef Google scholar
[3]
Belegradek I, Kwasik S, Schultz R. Moduli spaces of non-negative sectional curvature and non-unique souls. J Differential Geom, 2011, 89: 49–86
[4]
Botvinnik B, Ebert J, Randal-Williams O. Infinite loop spaces and positive scalar curvature. arXiv: 1411.7408
[5]
Botvinnik B, Gilkey P. The eta invariant and metrics of positive scalar curvature. Math Ann, 1995, 302(3): 507–517
CrossRef Google scholar
[6]
Botvinnik B, Gilkey P. Metrics of positive scalar curvature on spherical space forms. Canad J Math, 1996, 48(1): 64–80
CrossRef Google scholar
[7]
Botvinnik B, Hanke B, Schick T, Walsh M. Homotopy groups of the moduli space of metrics of positive scalar curvature. Geom Topol, 2010, 14: 2047–2076
CrossRef Google scholar
[8]
Carr R. Construction of manifolds of positive scalar curvature. Trans Amer Math Soc, 1988, 307(1): 63–74
CrossRef Google scholar
[9]
Cerf J. Sur les difféomorphismes de la sphère de dimension trois (Γ4= 0). Lecture Notes in Math, Vol 53. Berlin: Springer-Verlag, 1968
CrossRef Google scholar
[10]
Chen B L, Huang X T. Path-connectedness of the moduli spaces of metrics with positive isotropic curvature on four-manifolds. Math Ann (to appear)
CrossRef Google scholar
[11]
Chernysh V. On the homotopy type of the space R+(M). Preprint, arXiv: GT/0405235
[12]
Codá Marques F. Deforming three-manifolds with positive scalar curvature. Ann of Math (2), 2012, 176(2): 815–863
[13]
Crowley D, Schick T. The Gromoll filtration, KO-characteristic classes and metrics of positive scalar curvature. Geom Topol, 2013, 17: 1773–1790
CrossRef Google scholar
[14]
Dessai A, Klaus St, Tuschmann W. Nonconnected Moduli Spaces of Nonnegative Sectional Curvature Metrics on Simply Connected Manifolds. Preprint, 2016, arXiv: 1601.04877
[15]
Farrell F T, Ontaneda P. The Teichmüller space of pinched negatively curved metrics on a hyperbolic manifold is not contractible. Ann of Math (2), 2009, 170(1): 45–65
[16]
Farrell F T, Ontaneda P. The moduli space of negatively curved metrics of a hyperbolic manifold. J Topol, 2010, 3(3): 561–577
CrossRef Google scholar
[17]
Farrell F T, Ontaneda P. On the topology of the space of negatively curved metrics. J Differential Geom, 2010, 86(2): 273–301
[18]
Gajer P. Riemannian metrics of positive scalar curvature on compact manifolds with boundary. Ann Global Anal Geom, 1987, 5(3): 179–191
CrossRef Google scholar
[19]
Gromov M, Lawson H B Jr. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ Math Inst Hautes Études Sci, 1983, 58: 83–196
CrossRef Google scholar
[20]
Hanke B, Schick T, Steimle W. The space of metrics of positive scalar curvature. Publ Math Inst Hautes Études Sci, 2014, 120: 335–367
CrossRef Google scholar
[21]
Hitchin N. Harmonic spinors. Adv Math, 1974, 14: 1–55
CrossRef Google scholar
[22]
Kapovitch V, Petrunin A, Tuschmann W. Non-negative pinching, moduli spaces and bundles with infinitely many souls. J Differential Geom, 2005, 71(3): 365–383
[23]
Kreck M, Stolz S. Nonconnected moduli spaces of positive sectional curvature metrics. J Amer Math Soc, 1993, 6: 825–850
CrossRef Google scholar
[24]
Lawson H B Jr, Michelsohn M-L. Spin Geometry. Princeton: Princeton Univ Press, 1989
[25]
Leichtnam E, Piazza P. On higher eta-invariants and metrics of positive scalar curvature. K-Theory, 2001, 24(4): 341–359
CrossRef Google scholar
[26]
Lohkamp J. Curvature h-principles. Ann of Math, 1995, 142: 457–498
CrossRef Google scholar
[27]
Piazza P, Schick Th. Groups with torsion, bordism and rho invariants. Pacific J Math, 2007, 232(2): 355–378
CrossRef Google scholar
[28]
Piazza P, Schick Th. Rho classes, index theory and Stolz’ positive scalar curvature sequence. J Topology, 2014, 7(4): 965–1004
CrossRef Google scholar
[29]
Rosenberg J, Stolz S. Metrics of positive scalar curvature and connections with surgery. In: Cappell S, Ranicki A, Rosenberg J, eds. Surveys on Surgery Theory, Vol 2. Ann of Math Stud, Vol 149. Princeton: Princeton Univ Press, 2001, 353–386
CrossRef Google scholar
[30]
Ruberman D. Positive scalar curvature, diffeomorphisms and the Seiberg-Witten invariants. Geom Topol, 2001, 5: 895–924
CrossRef Google scholar
[31]
Tuschmann W, Wraith D. Moduli Spaces of Riemannian Metrics. Oberwolfach Seminars, Vol 46. Basel: Birkhäuser, 2015
CrossRef Google scholar
[32]
Walsh M. Metrics of Positive Scalar Curvature and Generalized Morse Functions, Part I. Mem Amer Math Soc, Vol 209, No 983. Providence: Amer Math Soc, 2011
[33]
Walsh M. Cobordism invariance of the homotopy type of the space of positive scalar curvature metrics. Proc Amer Math Soc, 2013, 141(7): 2475–2484
CrossRef Google scholar
[34]
Walsh M. H-spaces, loop spaces and the space of positive scalar curvature metrics on the sphere. Geom Topol, 2014, 18(4): 2189–2243
CrossRef Google scholar
[35]
Wang M, Ziller W. Einstein metrics on principal torus bundles. J Differential Geom, 1990, 31(1): 215–248
[36]
Weyl H. Über die Bestimmung einer geschlossenen konvexen Fläche durch ihr Linienelement. Vierteljahrsschr Naturforsch Ges Zür, 1916, 61: 40–72
[37]
Wraith D J. On the moduli space of positive Ricci curvature metrics on homotopy spheres. Geom Topol, 2011, 15: 1983–2015
CrossRef Google scholar
[38]
Wraith D J. Non-negative versus positive scalar curvature. Preprint, 2016, arXiv: 1607.00657

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(139 KB)

Accesses

Citations

Detail

Sections
Recommended

/