Frontiers of Mathematics in China >
Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality
Received date: 16 Feb 2016
Accepted date: 20 Jun 2016
Published date: 23 Sep 2016
Copyright
This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically flat and for asymptotically hyperbolic manifolds, respectively, by using a higher order scalar curvature. Then we prove its positivity and the Penrose inequality for graphical manifolds. One of the crucial steps in the proof of the Penrose inequality is the use of an Alexandrov-Fenchel inequality, which is a classical inequality in the Euclidean space. In the hyperbolic space, we have established this new Alexandrov-Fenchel inequality. We also have a similar work for asymptotically locally hyperbolic manifolds. At the end, we discuss the relation between the GBC mass and Chern’s magic form.
Yuxin GE , Guofang WANG , Jie WU , Chao XIA . Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality[J]. Frontiers of Mathematics in China, 2016 , 11(5) : 1207 -1237 . DOI: 10.1007/s11464-016-0558-3
1 |
Andersson L, Cai M, Galloway G J. Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann Henri Poincaré, 2008, 9(1): 1–33
|
2 |
Arnowitt R, Deser S, Misner C W. Coordinate invariance and energy expressions in general relativity. Phys Rev (2), 1961, 122: 997–1006
|
3 |
Ashtekhar A, Hansen R O. A unified treatment of null and spatial infinity in general relativity, I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity. J Math Phys, 1978, 19: 1542–1566
|
4 |
Bartnik R. The mass of an asymptotically flat manifold. Comm Pure Appl Math, 1986, 34: 661–693
|
5 |
Bonini V, Qing J. A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface. Ann Henri Poincaré, 2008, 9(2): 347–372
|
6 |
Borisenko A A, Miquel V. Total curvatures of convex hypersurfaces in hyperbolic space. Illinois J Math, 1999, 43: 61–78
|
7 |
Bray H L. Proof of the Riemannian Penrose inequality using the positive mass theorem. J Differential Geom, 2001, 59(2): 177–267
|
8 |
Bray H L. On the positive mass, Penrose, and ZAS inequalities in general dimension. In: Surveys in Geometric Analysis and Relativity. Adv Lect Math, Vol 20. Beijing /Somerville: Higher Education Press/Int Press, 2011, 1–27
|
9 |
Bray H L, Lee D A. On the Riemannian Penrose inequality in dimensions less than eight. Duke Math J, 2009, 148(1): 81–106
|
10 |
Brendle S. Hypersurfaces of constant mean curvature in deSitter-Schwarzschild space. Publ Math Inst Hautes Études Sci, 2014, 117(1): 247–269
|
11 |
Brendle S, Hung P-K, Wang M-T. A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold. Comm Pure Appl Math, 2016, 69: 124–144
|
12 |
Caúla T, de Lima L L, Santos N L. Deformation and rigidity results for the 2k-Ricci tensor and the 2k-Gauss-Bonnet curvature. Math Nachr, 2013, 286(17-18): 1752–1777
|
13 |
Chang S-Y A, Wang Y. On Aleksandrov-Fenchel inequalities for k-convex domains. Milan J Math, 2011, 79(1): 13–38
|
14 |
Cheng X, Zhou D. Rigidity for nearly umbilical hypersurfaces in space forms. J Geom Anal, 2014, 24(3): 1337–1345
|
15 |
Chern S S. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann of Math (2), 1944, 45: 747–752
|
16 |
Chern S S. On the curvatura integra in a Riemannian manifold. Ann of Math (2), 1945, 46: 674–684
|
17 |
Chruściel P T. Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Bergmann P, De Sabbata V, eds. Topological Properties and Global Structure of Space-time. New York: Plenum Press, 1986, 49–59
|
18 |
Chruściel P T. A remark on the positive energy theorem. Classical Quantum Gravity, 1986, 3: L115–L121
|
19 |
Chruściel P T, Herzlich M. The mass of asymptotically hyperbolic Riemannian manifolds. Pacific J Math, 2003, 212(2): 231–264
|
20 |
Chruściel P T, Nagy G. The mass of spacelike hypersurface in asymptotically anti-de Sitter space-times. Adv Theor Math Phys, 2002, 5: 697–754, gr-qc/0110014
|
21 |
Chruściel P T, Simon W. Towards the classification of static vacuum spacetimes with negative cosmological constant. J Math Phys, 2001, 42(4): 1779–1817
|
22 |
Crisóstomo J, Troncoso R, Zanelli J. Black hole scan. Phys Rev D (3), 2000, 62(8):084013
|
23 |
Dahl M, Gicquaud R, Sakovich A. Penrose type inequalities for asymptotically hyperbolic graphs. Ann Henri Poincaré, 2012,
|
24 |
Dai X. A positive mass theorem for spaces with asymptotic SUSY compactification. Comm Math Phys, 2004, 244: 335–345
|
25 |
de Lima L L, Girão F. A Penrose inequality for asymptotically locally hyperbolic graphs. 2013, arXiv: 1304.7882
|
26 |
de Lima L L, Girão F. The ADM mass of asymptotically flat hypersurfaces. Trans Amer Math Soc, 2015, 367(9): 6247–6266
|
27 |
de Lima L L, Girão F. Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces. Gen Relativity Gravitation, 2015, 47(3): Art 23 (20pp)
|
28 |
de Lima L L, Girão F. An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. Ann Henri Poincaré, 2015,
|
29 |
Deser S, Tekin B. Gravitational energy in quadratic-curvature gravities. Phys Rev Lett, 2002, 89: 101101
|
30 |
Deser S, Tekin B. Energy in generic higher curvature gravity theories. Phys Rev D, 2003, 75: 084032
|
31 |
Gallego E, Solanes G. Integral geometry and geometric inequalities in hyperbolic space. Differential Geom Appl, 2005, 22: 315–325
|
32 |
Ge Y, Wang G, Wu J. Hyperbolic Alexandrov-Fenchel quermassintegral inequalities I. 2013, arXiv: 1303.1714
|
33 |
Ge Y, Wang G, Wu J. A new mass for asymptotically flat manifolds. Adv Math, 2014, 266: 84–119
|
34 |
Ge Y, Wang G, Wu J. The Gauss-Bonnet-Chern mass of conformally flat manifolds. Int Math Res Not IMRN, 2014, 2014(17): 4855–4878
|
35 |
Ge Y, Wang G, Wu J. Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II. J Differential Geom, 2014, 98(2): 237–260
|
36 |
Ge Y, Wang G, Wu J. The GBC mass for asymptotically hyperbolic manifolds (Announcement). C R Math Acad Sci Paris, 2014, 352(2): 147–151
|
37 |
Ge Y, Wang G, Wu J. The GBC mass for asymptotically hyperbolic manifolds. Math Z, 2015, 281: 257–297
|
38 |
Ge Y, Wang G, Wu J, Xia C. A Penrose inequality for graphs over Kottler space. Calc Var Partial Differential Equations, 2015, 52: 755–782
|
39 |
Gerhardt C. Inverse curvature flows in hyperbolic space. J Differential Geom, 2011, 89(3): 487–527
|
40 |
Girao F, Mota A. The Gauss-Bonnet-Chern mass of higher codimension graphical manifolds. 2015, arXiv: 1509.00456
|
41 |
Guan P. Curvature measures, isoperimetric type inequalities and fully nonlinear PDES. Lecture Notes
|
42 |
Guan P, Li J. The quermassintegral inequalities for k-convex starshaped domains. Adv Math, 2009, 221: 1725–1732
|
43 |
Herzlich M. Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries. Zürich: Eur Math Soc, 2005, 103–121
|
44 |
Herzlich M. Computing asymptotic invariants with the Ricci tensor on asymptotically flat and hyperbolic manifolds. 2015, arXiv: 1503.00508
|
45 |
Huang L-H. On the center of mass of isolated systems with general asymptotics. Classical Quantum Gravity, 2009, 26(1): 015012 (25pp)
|
46 |
Huang L-H, Wu D. The equality case of the Penrose inequality for asymptotically flat graphs. Trans Amer Math Soc, 2015, 367(1): 31–47
|
47 |
Huisken G. In preparation. See also [42]
|
48 |
Huisken G, Ilmanen T. The inverse mean curvature flow and the Riemannian Penrose inequality. J Differential Geom, 2001, 59: 353–437
|
49 |
Jauregui J. Penrose-type inequalities with a Euclidean background. 2011, arXiv: 1108.4042
|
50 |
Labbi M L. On (2k)-minimal submanifolds. Results Math, 2008, 52: 323–338
|
51 |
Lam M-K G. The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions. 2010, arXiv.org/1010.4256
|
52 |
Lanczos C. A remarkable property of the Riemann-Christoffel tensor in four dimensions. Ann of Math (2), 1938, 39(4): 842–850
|
53 |
Lee D, Neves A. A static uniqueness theorem for higher genus Kottler metrics. slides of a talk delivered at Tsinghua Sanya International Mathematical Forum
|
54 |
Li H, Wei Y, Xiong C. A geometric inequality on hypersurface in hyperbolic space. Adv Math, 2014, 253: 152–162
|
55 |
Li H, Wei Y, Xiong C. The Gauss-Bonnet-Chern mass for graphic manifolds. Ann Global Anal Geom, 2014, 45(4): 251–266
|
56 |
Li Y, Nguyen L. A generalized mass involving higher order symmetric function of the curvature tensor. Ann Henri Poincaré, 2013, 14(7): 1733–1746
|
57 |
Lohkamp J. The higher dimensional Positive Mass Theorem I. arXiv: 0608795
|
58 |
Lovelock D. The Einstein tensor and its generalizations. J Math Phys, 1971, 12: 498–501
|
59 |
Mars M. Topical review: present status of the Penrose inequality. Classical Quantum Gravity, 2009, 26(19): 193001
|
60 |
Miao P. Positive mass theorem on manifolds admitting corners along a hypersurface. Adv Theor Math Phys, 2002, 6(6): 1163–1182
|
61 |
Miao P, Tam L-F. Evaluation of the ADM mass and center of mass via the Ricci tensor. Proc Amer Math Soc, 2016, 144: 753–761
|
62 |
Michel B. Geometric invariance of mass-like asymptotic invariants. J Math Phys, 2011, 52: 052504
|
63 |
Neves A. Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J Differential Geom, 2010, 84: 191–229
|
64 |
Parker T, Taubes C. On Witten’s proof of the positive energy theorem. Comm Math Phys, 1982, 84: 223–238
|
65 |
Patterson E M. A class of critical Riemannian metrics. J Lond Math Soc (2), 1981, 23(2): 349–358
|
66 |
Rivin I, Jean-Marc Schlenker. On the Schlafli differential formula. arXiv: math/0001176
|
67 |
Schmidt E. Die isoperimetrischen Ungleichungen auf der gewöhnlichen Kugel und für Rotationskörper im n-dimensionalen sphärischen Raum. Math Z, 1940, 46: 743–794
|
68 |
Schoen R. Talk at the Simons Center for Geometry and Physics. November, 2009
|
69 |
Schoen R, Yau S T. On the proof of the positive mass conjecture in general relativity. Comm Math Phys, 1979, 65: 45–76
|
70 |
Shi Y, Tam T-F. Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J Differential Geom, 2002, 62: 79–125
|
71 |
Wang G, Wu J. Chern’s magic form and the Gauss-Bonnet-Chern mass. 2015, arXiv: 1510.03036
|
72 |
Wang G, Xia C. Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space. Adv Math, 2014, 259: 532–556
|
73 |
Wang X. Mass for asymptotically hyperbolic manifolds. J Differential Geom, 2001, 57: 273–299
|
74 |
Willa A. Dimensionsabhängige Relationen für den Krümmungstensor und neue Klassen von Einstein- und Spuereinsteinräumen. Diss ETH Nr, 14026
|
75 |
Witten E. A new proof of the positive energy theorem. Comm Math Phys, 1981, 80: 381–402
|
76 |
Zhang W. Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathematics, Vol 4. River Edge: World Scientific Publishing Co, Inc, 2001
|
77 |
Zhang X. A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I. Comm Math Phys, 2004, 249(3): 529–548
|
/
〈 | 〉 |