Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality

Yuxin GE, Guofang WANG, Jie WU, Chao XIA

PDF(307 KB)
PDF(307 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1207-1237. DOI: 10.1007/s11464-016-0558-3
SURVEY ARTICLE
SURVEY ARTICLE

Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality

Author information +
History +

Abstract

This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically flat and for asymptotically hyperbolic manifolds, respectively, by using a higher order scalar curvature. Then we prove its positivity and the Penrose inequality for graphical manifolds. One of the crucial steps in the proof of the Penrose inequality is the use of an Alexandrov-Fenchel inequality, which is a classical inequality in the Euclidean space. In the hyperbolic space, we have established this new Alexandrov-Fenchel inequality. We also have a similar work for asymptotically locally hyperbolic manifolds. At the end, we discuss the relation between the GBC mass and Chern’s magic form.

Keywords

Gauss-Bonnet-Chern (GBC) mass / Gauss-Bonnet curvature / positive mass theorem (PMT) / asymptotically hyperbolic manifold / Penrose inequality / Alexandrov-Fenchel inequality

Cite this article

Download citation ▾
Yuxin GE, Guofang WANG, Jie WU, Chao XIA. Gauss-Bonnet-Chern mass and Alexandrov-Fenchel inequality. Front. Math. China, 2016, 11(5): 1207‒1237 https://doi.org/10.1007/s11464-016-0558-3

References

[1]
Andersson L, Cai M, Galloway G J. Rigidity and positivity of mass for asymptotically hyperbolic manifolds. Ann Henri Poincaré, 2008, 9(1): 1–33
CrossRef Google scholar
[2]
Arnowitt R, Deser S, Misner C W. Coordinate invariance and energy expressions in general relativity. Phys Rev (2), 1961, 122: 997–1006
[3]
Ashtekhar A, Hansen R O. A unified treatment of null and spatial infinity in general relativity, I. Universal structure, asymptotic symmetries and conserved quantities at spatial infinity. J Math Phys, 1978, 19: 1542–1566
CrossRef Google scholar
[4]
Bartnik R. The mass of an asymptotically flat manifold. Comm Pure Appl Math, 1986, 34: 661–693
CrossRef Google scholar
[5]
Bonini V, Qing J. A positive mass theorem on asymptotically hyperbolic manifolds with corners along a hypersurface. Ann Henri Poincaré, 2008, 9(2): 347–372
CrossRef Google scholar
[6]
Borisenko A A, Miquel V. Total curvatures of convex hypersurfaces in hyperbolic space. Illinois J Math, 1999, 43: 61–78
[7]
Bray H L. Proof of the Riemannian Penrose inequality using the positive mass theorem. J Differential Geom, 2001, 59(2): 177–267
[8]
Bray H L. On the positive mass, Penrose, and ZAS inequalities in general dimension. In: Surveys in Geometric Analysis and Relativity. Adv Lect Math, Vol 20. Beijing /Somerville: Higher Education Press/Int Press, 2011, 1–27
[9]
Bray H L, Lee D A. On the Riemannian Penrose inequality in dimensions less than eight. Duke Math J, 2009, 148(1): 81–106
CrossRef Google scholar
[10]
Brendle S. Hypersurfaces of constant mean curvature in deSitter-Schwarzschild space. Publ Math Inst Hautes Études Sci, 2014, 117(1): 247–269
CrossRef Google scholar
[11]
Brendle S, Hung P-K, Wang M-T. A Minkowski-type inequality for hypersurfaces in the Anti-deSitter-Schwarzschild manifold. Comm Pure Appl Math, 2016, 69: 124–144
CrossRef Google scholar
[12]
Caúla T, de Lima L L, Santos N L. Deformation and rigidity results for the 2k-Ricci tensor and the 2k-Gauss-Bonnet curvature. Math Nachr, 2013, 286(17-18): 1752–1777
CrossRef Google scholar
[13]
Chang S-Y A, Wang Y. On Aleksandrov-Fenchel inequalities for k-convex domains. Milan J Math, 2011, 79(1): 13–38
CrossRef Google scholar
[14]
Cheng X, Zhou D. Rigidity for nearly umbilical hypersurfaces in space forms. J Geom Anal, 2014, 24(3): 1337–1345
CrossRef Google scholar
[15]
Chern S S. A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann of Math (2), 1944, 45: 747–752
[16]
Chern S S. On the curvatura integra in a Riemannian manifold. Ann of Math (2), 1945, 46: 674–684
[17]
Chruściel P T. Boundary conditions at spatial infinity from a Hamiltonian point of view. In: Bergmann P, De Sabbata V, eds. Topological Properties and Global Structure of Space-time. New York: Plenum Press, 1986, 49–59
CrossRef Google scholar
[18]
Chruściel P T. A remark on the positive energy theorem. Classical Quantum Gravity, 1986, 3: L115–L121
CrossRef Google scholar
[19]
Chruściel P T, Herzlich M. The mass of asymptotically hyperbolic Riemannian manifolds. Pacific J Math, 2003, 212(2): 231–264
CrossRef Google scholar
[20]
Chruściel P T, Nagy G. The mass of spacelike hypersurface in asymptotically anti-de Sitter space-times. Adv Theor Math Phys, 2002, 5: 697–754, gr-qc/0110014
[21]
Chruściel P T, Simon W. Towards the classification of static vacuum spacetimes with negative cosmological constant. J Math Phys, 2001, 42(4): 1779–1817
CrossRef Google scholar
[22]
Crisóstomo J, Troncoso R, Zanelli J. Black hole scan. Phys Rev D (3), 2000, 62(8):084013
[23]
Dahl M, Gicquaud R, Sakovich A. Penrose type inequalities for asymptotically hyperbolic graphs. Ann Henri Poincaré, 2012,
CrossRef Google scholar
[24]
Dai X. A positive mass theorem for spaces with asymptotic SUSY compactification. Comm Math Phys, 2004, 244: 335–345
CrossRef Google scholar
[25]
de Lima L L, Girão F. A Penrose inequality for asymptotically locally hyperbolic graphs. 2013, arXiv: 1304.7882
[26]
de Lima L L, Girão F. The ADM mass of asymptotically flat hypersurfaces. Trans Amer Math Soc, 2015, 367(9): 6247–6266
CrossRef Google scholar
[27]
de Lima L L, Girão F. Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces. Gen Relativity Gravitation, 2015, 47(3): Art 23 (20pp)
[28]
de Lima L L, Girão F. An Alexandrov-Fenchel-type inequality in hyperbolic space with an application to a Penrose inequality. Ann Henri Poincaré, 2015,
CrossRef Google scholar
[29]
Deser S, Tekin B. Gravitational energy in quadratic-curvature gravities. Phys Rev Lett, 2002, 89: 101101
CrossRef Google scholar
[30]
Deser S, Tekin B. Energy in generic higher curvature gravity theories. Phys Rev D, 2003, 75: 084032
CrossRef Google scholar
[31]
Gallego E, Solanes G. Integral geometry and geometric inequalities in hyperbolic space. Differential Geom Appl, 2005, 22: 315–325
CrossRef Google scholar
[32]
Ge Y, Wang G, Wu J. Hyperbolic Alexandrov-Fenchel quermassintegral inequalities I. 2013, arXiv: 1303.1714
[33]
Ge Y, Wang G, Wu J. A new mass for asymptotically flat manifolds. Adv Math, 2014, 266: 84–119
CrossRef Google scholar
[34]
Ge Y, Wang G, Wu J. The Gauss-Bonnet-Chern mass of conformally flat manifolds. Int Math Res Not IMRN, 2014, 2014(17): 4855–4878
[35]
Ge Y, Wang G, Wu J. Hyperbolic Alexandrov-Fenchel quermassintegral inequalities II. J Differential Geom, 2014, 98(2): 237–260
[36]
Ge Y, Wang G, Wu J. The GBC mass for asymptotically hyperbolic manifolds (Announcement). C R Math Acad Sci Paris, 2014, 352(2): 147–151
CrossRef Google scholar
[37]
Ge Y, Wang G, Wu J. The GBC mass for asymptotically hyperbolic manifolds. Math Z, 2015, 281: 257–297
CrossRef Google scholar
[38]
Ge Y, Wang G, Wu J, Xia C. A Penrose inequality for graphs over Kottler space. Calc Var Partial Differential Equations, 2015, 52: 755–782
CrossRef Google scholar
[39]
Gerhardt C. Inverse curvature flows in hyperbolic space. J Differential Geom, 2011, 89(3): 487–527
[40]
Girao F, Mota A. The Gauss-Bonnet-Chern mass of higher codimension graphical manifolds. 2015, arXiv: 1509.00456
[41]
Guan P. Curvature measures, isoperimetric type inequalities and fully nonlinear PDES. Lecture Notes
[42]
Guan P, Li J. The quermassintegral inequalities for k-convex starshaped domains. Adv Math, 2009, 221: 1725–1732
CrossRef Google scholar
[43]
Herzlich M. Mass formulae for asymptotically hyperbolic manifolds. In: AdS/CFT Correspondence: Einstein Metrics and Their Conformal Boundaries. Zürich: Eur Math Soc, 2005, 103–121
CrossRef Google scholar
[44]
Herzlich M. Computing asymptotic invariants with the Ricci tensor on asymptotically flat and hyperbolic manifolds. 2015, arXiv: 1503.00508
[45]
Huang L-H. On the center of mass of isolated systems with general asymptotics. Classical Quantum Gravity, 2009, 26(1): 015012 (25pp)
[46]
Huang L-H, Wu D. The equality case of the Penrose inequality for asymptotically flat graphs. Trans Amer Math Soc, 2015, 367(1): 31–47
CrossRef Google scholar
[47]
Huisken G. In preparation. See also [42]
[48]
Huisken G, Ilmanen T. The inverse mean curvature flow and the Riemannian Penrose inequality. J Differential Geom, 2001, 59: 353–437
[49]
Jauregui J. Penrose-type inequalities with a Euclidean background. 2011, arXiv: 1108.4042
[50]
Labbi M L. On (2k)-minimal submanifolds. Results Math, 2008, 52: 323–338
CrossRef Google scholar
[51]
Lam M-K G. The graph cases of the Riemannian positive mass and Penrose inequality in all dimensions. 2010, arXiv.org/1010.4256
[52]
Lanczos C. A remarkable property of the Riemann-Christoffel tensor in four dimensions. Ann of Math (2), 1938, 39(4): 842–850
[53]
Lee D, Neves A. A static uniqueness theorem for higher genus Kottler metrics. slides of a talk delivered at Tsinghua Sanya International Mathematical Forum
[54]
Li H, Wei Y, Xiong C. A geometric inequality on hypersurface in hyperbolic space. Adv Math, 2014, 253: 152–162
CrossRef Google scholar
[55]
Li H, Wei Y, Xiong C. The Gauss-Bonnet-Chern mass for graphic manifolds. Ann Global Anal Geom, 2014, 45(4): 251–266
CrossRef Google scholar
[56]
Li Y, Nguyen L. A generalized mass involving higher order symmetric function of the curvature tensor. Ann Henri Poincaré, 2013, 14(7): 1733–1746
CrossRef Google scholar
[57]
Lohkamp J. The higher dimensional Positive Mass Theorem I. arXiv: 0608795
[58]
Lovelock D. The Einstein tensor and its generalizations. J Math Phys, 1971, 12: 498–501
CrossRef Google scholar
[59]
Mars M. Topical review: present status of the Penrose inequality. Classical Quantum Gravity, 2009, 26(19): 193001
CrossRef Google scholar
[60]
Miao P. Positive mass theorem on manifolds admitting corners along a hypersurface. Adv Theor Math Phys, 2002, 6(6): 1163–1182
CrossRef Google scholar
[61]
Miao P, Tam L-F. Evaluation of the ADM mass and center of mass via the Ricci tensor. Proc Amer Math Soc, 2016, 144: 753–761
CrossRef Google scholar
[62]
Michel B. Geometric invariance of mass-like asymptotic invariants. J Math Phys, 2011, 52: 052504
CrossRef Google scholar
[63]
Neves A. Insufficient convergence of inverse mean curvature flow on asymptotically hyperbolic manifolds. J Differential Geom, 2010, 84: 191–229
[64]
Parker T, Taubes C. On Witten’s proof of the positive energy theorem. Comm Math Phys, 1982, 84: 223–238
CrossRef Google scholar
[65]
Patterson E M. A class of critical Riemannian metrics. J Lond Math Soc (2), 1981, 23(2): 349–358
[66]
Rivin I, Jean-Marc Schlenker. On the Schlafli differential formula. arXiv: math/0001176
[67]
Schmidt E. Die isoperimetrischen Ungleichungen auf der gewöhnlichen Kugel und für Rotationskörper im n-dimensionalen sphärischen Raum. Math Z, 1940, 46: 743–794
CrossRef Google scholar
[68]
Schoen R. Talk at the Simons Center for Geometry and Physics. November, 2009
[69]
Schoen R, Yau S T. On the proof of the positive mass conjecture in general relativity. Comm Math Phys, 1979, 65: 45–76
CrossRef Google scholar
[70]
Shi Y, Tam T-F. Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. J Differential Geom, 2002, 62: 79–125
[71]
Wang G, Wu J. Chern’s magic form and the Gauss-Bonnet-Chern mass. 2015, arXiv: 1510.03036
[72]
Wang G, Xia C. Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyperbolic space. Adv Math, 2014, 259: 532–556
CrossRef Google scholar
[73]
Wang X. Mass for asymptotically hyperbolic manifolds. J Differential Geom, 2001, 57: 273–299
[74]
Willa A. Dimensionsabhängige Relationen für den Krümmungstensor und neue Klassen von Einstein- und Spuereinsteinräumen. Diss ETH Nr, 14026
[75]
Witten E. A new proof of the positive energy theorem. Comm Math Phys, 1981, 80: 381–402
CrossRef Google scholar
[76]
Zhang W. Lectures on Chern-Weil Theory and Witten Deformations. Nankai Tracts in Mathematics, Vol 4. River Edge: World Scientific Publishing Co, Inc, 2001
CrossRef Google scholar
[77]
Zhang X. A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds. I. Comm Math Phys, 2004, 249(3): 529–548
CrossRef Google scholar

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(307 KB)

Accesses

Citations

Detail

Sections
Recommended

/