SURVEY ARTICLE

A glance at three-dimensional Alexandrov spaces

  • Fernando GALAZ-GARCÍA
Expand
  • Institut für Algebra und Geometrie, Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany

Received date: 23 May 2016

Accepted date: 06 Aug 2016

Published date: 23 Sep 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We discuss the topology and geometry of closed Alexandrov spaces of dimension three.

Cite this article

Fernando GALAZ-GARCÍA . A glance at three-dimensional Alexandrov spaces[J]. Frontiers of Mathematics in China, 2016 , 11(5) : 1189 -1206 . DOI: 10.1007/s11464-016-0582-3

1
Berestovskiĭ V N. Homogeneous manifolds with an intrinsic metric II. Sibirsk Mat Zh, 1989, 30(2): 14–28 (in Russian); Sib Math J, 1989, 30(2): 180–191

2
Bredon G E. Introduction to Compact Transformation Groups. New York: Acad Press, 1972

3
Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001

4
Burago Y, Gromov M, Perel’man G. A. D. Alexandrov spaces with curvatures bounded below. Uspekhi Mat Nauk, 1992, 47(2): 3–51(in Russian); Russian Math Surveys, 1992, 47(2): 1–58

DOI

5
Cannon J W. Shrinking cell-like decompositions of manifolds. Codimension three. Ann of Math (2), 1979, 110(1): 83–112

6
Dantzig D van, Waerden B Lvan der. Über metrisch homogene r¨aume. Abh Math Sem Univ Hamburg, 1928, 6(1): 367–376

DOI

7
Deng Q, Galaz-Garćıa F, Guijarro L, Munn M. Three-Dimensional Alexandrov spaces with positive or nonnegative Ricci curvature. Preprint, 2016, arXiv: 1602.07724

8
Dinkelbach J, Leeb B. Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3-manifolds. Geom Topol, 2009, 13(2): 1129–1173

DOI

9
Edwards R D. The topology of manifolds and cell-like maps. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Helsinki: Acad Sci Fennica, 1980, 111–127

10
Edwards R D. Suspensions of homology spheres. Preprint, 2006, arXiv: math/0610573

11
Fukaya K, Yamaguchi T. Isometry groups of singular spaces. Math Z, 1994, 216(1): 31–44

DOI

12
Galaz-Garćıa F, Guijarro L. Isometry groups of Alexandrov spaces. Bull Lond Math Soc, 2013, 45(3): 567–579

DOI

13
Galaz-Garćıa F, Guijarro L. On three-dimensional Alexandrov spaces. Int Math Res Not IMRN, 2015, (14): 5560–5576

14
Galaz-Garćıa F, Searle C. Cohomogeneity one Alexandrov spaces. Transform Groups, 2011, 16(1): 91–107

DOI

15
Galaz-Garćıa F, Zarei M. Cohomogeneity one topological manifolds revisited. Preprint, 2015, arXiv: 1503.09068

16
Grove K. Geometry of, and via, symmetries. In: Conformal, Riemannian and Lagrangian Geometry (Knoxville, TN, 2000). Univ Lecture Ser, Vol 27. Providence: Amer Math Soc, 2002, 31–53

DOI

17
Grove K. Developments around positive sectional curvature. In: Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry. Surv Differ Geom, Vol 13. Somerville: Int Press, 2009, 117–133

18
Grove K, Petersen P. Manifolds near the boundary of existence. J Differential Geom, 1991, 33(2): 379–394

19
Grove K, Wilking B. A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Geom Topol, 2014, 18(5): 3091–3110

DOI

20
Harvey J, Searle C. Orientation and symmetries of Alexandrov spaces with applications in positive curvature. Preprint, 2013, arXiv: 1209.1366

21
Hempel J. 3-manifolds. Providence: AMS Chelsea Publishing, 2004

DOI

22
Hirsch M W, Smale S. On involutions of the 3-sphere. Amer J Math, 1959, 81: 893–900

DOI

23
Hoelscher C A. Classification of cohomogeneity one manifolds in low dimensions. Pacific J Math, 2010, 246(1): 129–185

DOI

24
Hsiang W-Y. Lie transformation groups and differential geometry. In: Differential Geometry and Differential Equations (Shanghai, 1985). Lecture Notes in Math, Vol 1255. Berlin: Springer, 1987, 34–52

DOI

25
Kapovitch V. Perelman’s stability theorem. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 103–136

26
Kobayashi S. Transformation Groups in Differential Geometry. Classics Math. Berlin: Springer-Verlag, 1995

27
Kwun K W, Tollefson J L. PL involutions of S1× S1 × S1.Trans Amer Math Soc, 1975, 203: 97–106

28
Livesay G R. Involutions with two fixed points on the three-sphere. Ann of Math (2), 1963, 78: 582–593

29
Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math (2), 2009, 169(3): 903–991

30
Luft E, Sjerve D. Involutions with isolated fixed points on orientable three-dimensional flat space forms. Trans Amer Math Soc, 1984, 285(1): 305–336

31
Mitsuishi A, Yamaguchi T. Collapsing three-dimensional closed Alexandrov spaces with a lower curvature bound. Trans Amer Math Soc, 2015, 367(4): 2339–2410

DOI

32
Mostert P S. On a compact Lie group acting on a manifold. Ann of Math (2), 1957, 65: 447–455; Errata, “On a compact Lie group acting on a manifold”. Ann of Math (2), 1957, 66: 589

33
Myers S B, Steenrod N E. The group of isometries of a Riemannian manifold. Ann of Math (2), 1939, 40(2): 400–416

34
Neumann W D. 3-Dimensional G-manifolds with 2-dimensional orbits. In: Mostert P S, ed. Proceedings of the Conference on Transformation Groups. Berlin: Springer- Verlag, 1968, 220–222

DOI

35
Núñez-Zimbrón J. Closed three-dimensional Alexandrov spaces with isometric circle actions. Tohoku Math J (to appear), arXiv: 1312.0540

36
Orlik P. Seifert Manifolds. Lecture Notes in Math, Vol 291. Berlin: Springer-Verlag, 1972

DOI

37
Orlik P, Raymond F. Actions of SO(2) on 3-manifolds. In: Mostert P S, ed. Proceedings of the Conference on Transformation Groups. Berlin: Springer-Verlag, 1968, 297–318

DOI

38
Otsu Y, Shioya T. The Riemannian structure of Alexandrov spaces. J Differential Geom, 1994, 39(3): 629–658

39
Parker J. 4-Dimensional G-manifolds with 3-dimensional orbits. Pacific J Math, 1986, 129(1): 187–204

DOI

40
Perelman G. Alexandrov spaces with curvatures bounded from below, II. Preprint, 1991

41
Perelman G. Elements of Morse theory on Aleksandrov spaces. St Petersburg Math J, 1994, 5: 205–213

42
Perel’man G Ya, Petrunin A M. Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz, 1993, 5(1): 242–256 (Russian); St Petersburg Math J, 1994, 5(1): 215–227

43
Petrunin A. Applications of quasigeodesics and gradient curves. In: Comparison Geometry (Berkeley, CA, 1993-94). Math Sci Res Inst Publ, Vol 30. Cambridge: Cambridge Univ Press, 1997, 203–219

44
Petrunin A. Semiconcave functions in Alexandrov’s geometry. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 137–201

45
Plaut C. Metric spaces of curvature _ k. In: Handbook of Geometric Topology. Amsterdam: North-Holland, 2002, 819–898

46
Porti J. Geometrization of three manifolds and Perelman’s proof. Rev R Acad Cienc Exactas F´ıs Nat Ser A Mat RACSAM, 2008, 102(1): 101–125

47
Raymond F. Classification of the actions of the circle on 3-manifolds. Trans Amer Math Soc, 1968, 131: 51–78

DOI

48
Scott P. The geometries of 3-manifolds. Bull Lond Math Soc, 1983, 15(5): 401–487

DOI

49
Shiohama K. An Introduction to the Geometry of Alexandrov Spaces. Lecture Notes Series, 8. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993

50
Shioya T, Yamaguchi T. Collapsing three-manifolds under a lower curvature bound. J Differential Geom, 2000, 56(1): 1–66

51
Shioya T, Yamaguchi T. Volume collapsed three-manifolds with a lower curvature bound. Math Ann, 2005, 333(1): 131–155

DOI

52
Sturm K-T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65–131

DOI

53
Sturm K-T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133–177

DOI

54
Wilking B. Nonnegatively and positively curved manifolds. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 25–62

55
Ziller W. Riemannian manifolds with positive sectional curvature. In: Herrera R, Hernández-Lamoneda L, eds. Geometry of Manifolds with Non-negative Sectional Curvature. Lecture Notes in Math, Vol 2110. Cham: Springer, 2014<Date>,</Date> 1–19

DOI

Outlines

/