A glance at three-dimensional Alexandrov spaces
Fernando GALAZ-GARCÍA
A glance at three-dimensional Alexandrov spaces
We discuss the topology and geometry of closed Alexandrov spaces of dimension three.
Alexandrov space / group action / 3-manifold
[1] |
Berestovskiĭ V N. Homogeneous manifolds with an intrinsic metric II. Sibirsk Mat Zh, 1989, 30(2): 14–28 (in Russian); Sib Math J, 1989, 30(2): 180–191
|
[2] |
Bredon G E. Introduction to Compact Transformation Groups. New York: Acad Press, 1972
|
[3] |
Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001
|
[4] |
Burago Y, Gromov M, Perel’man G. A. D. Alexandrov spaces with curvatures bounded below. Uspekhi Mat Nauk, 1992, 47(2): 3–51(in Russian); Russian Math Surveys, 1992, 47(2): 1–58
CrossRef
Google scholar
|
[5] |
Cannon J W. Shrinking cell-like decompositions of manifolds. Codimension three. Ann of Math (2), 1979, 110(1): 83–112
|
[6] |
Dantzig D van, Waerden B Lvan der. Über metrisch homogene r¨aume. Abh Math Sem Univ Hamburg, 1928, 6(1): 367–376
CrossRef
Google scholar
|
[7] |
Deng Q, Galaz-Garćıa F, Guijarro L, Munn M. Three-Dimensional Alexandrov spaces with positive or nonnegative Ricci curvature. Preprint, 2016, arXiv: 1602.07724
|
[8] |
Dinkelbach J, Leeb B. Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3-manifolds. Geom Topol, 2009, 13(2): 1129–1173
CrossRef
Google scholar
|
[9] |
Edwards R D. The topology of manifolds and cell-like maps. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Helsinki: Acad Sci Fennica, 1980, 111–127
|
[10] |
Edwards R D. Suspensions of homology spheres. Preprint, 2006, arXiv: math/0610573
|
[11] |
Fukaya K, Yamaguchi T. Isometry groups of singular spaces. Math Z, 1994, 216(1): 31–44
CrossRef
Google scholar
|
[12] |
Galaz-Garćıa F, Guijarro L. Isometry groups of Alexandrov spaces. Bull Lond Math Soc, 2013, 45(3): 567–579
CrossRef
Google scholar
|
[13] |
Galaz-Garćıa F, Guijarro L. On three-dimensional Alexandrov spaces. Int Math Res Not IMRN, 2015, (14): 5560–5576
|
[14] |
Galaz-Garćıa F, Searle C. Cohomogeneity one Alexandrov spaces. Transform Groups, 2011, 16(1): 91–107
CrossRef
Google scholar
|
[15] |
Galaz-Garćıa F, Zarei M. Cohomogeneity one topological manifolds revisited. Preprint, 2015, arXiv: 1503.09068
|
[16] |
Grove K. Geometry of, and via, symmetries. In: Conformal, Riemannian and Lagrangian Geometry (Knoxville, TN, 2000). Univ Lecture Ser, Vol 27. Providence: Amer Math Soc, 2002, 31–53
CrossRef
Google scholar
|
[17] |
Grove K. Developments around positive sectional curvature. In: Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry. Surv Differ Geom, Vol 13. Somerville: Int Press, 2009, 117–133
|
[18] |
Grove K, Petersen P. Manifolds near the boundary of existence. J Differential Geom, 1991, 33(2): 379–394
|
[19] |
Grove K, Wilking B. A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Geom Topol, 2014, 18(5): 3091–3110
CrossRef
Google scholar
|
[20] |
Harvey J, Searle C. Orientation and symmetries of Alexandrov spaces with applications in positive curvature. Preprint, 2013, arXiv: 1209.1366
|
[21] |
Hempel J. 3-manifolds. Providence: AMS Chelsea Publishing, 2004
CrossRef
Google scholar
|
[22] |
Hirsch M W, Smale S. On involutions of the 3-sphere. Amer J Math, 1959, 81: 893–900
CrossRef
Google scholar
|
[23] |
Hoelscher C A. Classification of cohomogeneity one manifolds in low dimensions. Pacific J Math, 2010, 246(1): 129–185
CrossRef
Google scholar
|
[24] |
Hsiang W-Y. Lie transformation groups and differential geometry. In: Differential Geometry and Differential Equations (Shanghai, 1985). Lecture Notes in Math, Vol 1255. Berlin: Springer, 1987, 34–52
CrossRef
Google scholar
|
[25] |
Kapovitch V. Perelman’s stability theorem. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 103–136
|
[26] |
Kobayashi S. Transformation Groups in Differential Geometry. Classics Math. Berlin: Springer-Verlag, 1995
|
[27] |
Kwun K W, Tollefson J L. PL involutions of S1× S1 × S1.Trans Amer Math Soc, 1975, 203: 97–106
|
[28] |
Livesay G R. Involutions with two fixed points on the three-sphere. Ann of Math (2), 1963, 78: 582–593
|
[29] |
Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math (2), 2009, 169(3): 903–991
|
[30] |
Luft E, Sjerve D. Involutions with isolated fixed points on orientable three-dimensional flat space forms. Trans Amer Math Soc, 1984, 285(1): 305–336
|
[31] |
Mitsuishi A, Yamaguchi T. Collapsing three-dimensional closed Alexandrov spaces with a lower curvature bound. Trans Amer Math Soc, 2015, 367(4): 2339–2410
CrossRef
Google scholar
|
[32] |
Mostert P S. On a compact Lie group acting on a manifold. Ann of Math (2), 1957, 65: 447–455; Errata, “On a compact Lie group acting on a manifold”. Ann of Math (2), 1957, 66: 589
|
[33] |
Myers S B, Steenrod N E. The group of isometries of a Riemannian manifold. Ann of Math (2), 1939, 40(2): 400–416
|
[34] |
Neumann W D. 3-Dimensional G-manifolds with 2-dimensional orbits. In: Mostert P S, ed. Proceedings of the Conference on Transformation Groups. Berlin: Springer- Verlag, 1968, 220–222
CrossRef
Google scholar
|
[35] |
Núñez-Zimbrón J. Closed three-dimensional Alexandrov spaces with isometric circle actions. Tohoku Math J (to appear), arXiv: 1312.0540
|
[36] |
Orlik P. Seifert Manifolds. Lecture Notes in Math, Vol 291. Berlin: Springer-Verlag, 1972
CrossRef
Google scholar
|
[37] |
Orlik P, Raymond F. Actions of SO(2) on 3-manifolds. In: Mostert P S, ed. Proceedings of the Conference on Transformation Groups. Berlin: Springer-Verlag, 1968, 297–318
CrossRef
Google scholar
|
[38] |
Otsu Y, Shioya T. The Riemannian structure of Alexandrov spaces. J Differential Geom, 1994, 39(3): 629–658
|
[39] |
Parker J. 4-Dimensional G-manifolds with 3-dimensional orbits. Pacific J Math, 1986, 129(1): 187–204
CrossRef
Google scholar
|
[40] |
Perelman G. Alexandrov spaces with curvatures bounded from below, II. Preprint, 1991
|
[41] |
Perelman G. Elements of Morse theory on Aleksandrov spaces. St Petersburg Math J, 1994, 5: 205–213
|
[42] |
Perel’man G Ya, Petrunin A M. Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz, 1993, 5(1): 242–256 (Russian); St Petersburg Math J, 1994, 5(1): 215–227
|
[43] |
Petrunin A. Applications of quasigeodesics and gradient curves. In: Comparison Geometry (Berkeley, CA, 1993-94). Math Sci Res Inst Publ, Vol 30. Cambridge: Cambridge Univ Press, 1997, 203–219
|
[44] |
Petrunin A. Semiconcave functions in Alexandrov’s geometry. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 137–201
|
[45] |
Plaut C. Metric spaces of curvature _ k. In: Handbook of Geometric Topology. Amsterdam: North-Holland, 2002, 819–898
|
[46] |
Porti J. Geometrization of three manifolds and Perelman’s proof. Rev R Acad Cienc Exactas F´ıs Nat Ser A Mat RACSAM, 2008, 102(1): 101–125
|
[47] |
Raymond F. Classification of the actions of the circle on 3-manifolds. Trans Amer Math Soc, 1968, 131: 51–78
CrossRef
Google scholar
|
[48] |
Scott P. The geometries of 3-manifolds. Bull Lond Math Soc, 1983, 15(5): 401–487
CrossRef
Google scholar
|
[49] |
Shiohama K. An Introduction to the Geometry of Alexandrov Spaces. Lecture Notes Series, 8. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993
|
[50] |
Shioya T, Yamaguchi T. Collapsing three-manifolds under a lower curvature bound. J Differential Geom, 2000, 56(1): 1–66
|
[51] |
Shioya T, Yamaguchi T. Volume collapsed three-manifolds with a lower curvature bound. Math Ann, 2005, 333(1): 131–155
CrossRef
Google scholar
|
[52] |
Sturm K-T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65–131
CrossRef
Google scholar
|
[53] |
Sturm K-T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133–177
CrossRef
Google scholar
|
[54] |
Wilking B. Nonnegatively and positively curved manifolds. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 25–62
|
[55] |
Ziller W. Riemannian manifolds with positive sectional curvature. In: Herrera R, Hernández-Lamoneda L, eds. Geometry of Manifolds with Non-negative Sectional Curvature. Lecture Notes in Math, Vol 2110. Cham: Springer, 2014<Date>,</Date> 1–19
CrossRef
Google scholar
|
/
〈 | 〉 |