A glance at three-dimensional Alexandrov spaces

Fernando GALAZ-GARCÍA

Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1189 -1206.

PDF (227KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (5) : 1189 -1206. DOI: 10.1007/s11464-016-0582-3
SURVEY ARTICLE
SURVEY ARTICLE

A glance at three-dimensional Alexandrov spaces

Author information +
History +
PDF (227KB)

Abstract

We discuss the topology and geometry of closed Alexandrov spaces of dimension three.

Keywords

Alexandrov space / group action / 3-manifold

Cite this article

Download citation ▾
Fernando GALAZ-GARCÍA. A glance at three-dimensional Alexandrov spaces. Front. Math. China, 2016, 11(5): 1189-1206 DOI:10.1007/s11464-016-0582-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berestovskiĭ V N. Homogeneous manifolds with an intrinsic metric II. Sibirsk Mat Zh, 1989, 30(2): 14–28 (in Russian); Sib Math J, 1989, 30(2): 180–191

[2]

Bredon G E. Introduction to Compact Transformation Groups. New York: Acad Press, 1972

[3]

Burago D, Burago Y, Ivanov S. A Course in Metric Geometry. Grad Stud Math, Vol 33. Providence: Amer Math Soc, 2001

[4]

Burago Y, Gromov M, Perel’man G. A. D. Alexandrov spaces with curvatures bounded below. Uspekhi Mat Nauk, 1992, 47(2): 3–51(in Russian); Russian Math Surveys, 1992, 47(2): 1–58

[5]

Cannon J W. Shrinking cell-like decompositions of manifolds. Codimension three. Ann of Math (2), 1979, 110(1): 83–112

[6]

Dantzig D van, Waerden B Lvan der. Über metrisch homogene r¨aume. Abh Math Sem Univ Hamburg, 1928, 6(1): 367–376

[7]

Deng Q, Galaz-Garćıa F, Guijarro L, Munn M. Three-Dimensional Alexandrov spaces with positive or nonnegative Ricci curvature. Preprint, 2016, arXiv: 1602.07724

[8]

Dinkelbach J, Leeb B. Equivariant Ricci flow with surgery and applications to finite group actions on geometric 3-manifolds. Geom Topol, 2009, 13(2): 1129–1173

[9]

Edwards R D. The topology of manifolds and cell-like maps. In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Helsinki: Acad Sci Fennica, 1980, 111–127

[10]

Edwards R D. Suspensions of homology spheres. Preprint, 2006, arXiv: math/0610573

[11]

Fukaya K, Yamaguchi T. Isometry groups of singular spaces. Math Z, 1994, 216(1): 31–44

[12]

Galaz-Garćıa F, Guijarro L. Isometry groups of Alexandrov spaces. Bull Lond Math Soc, 2013, 45(3): 567–579

[13]

Galaz-Garćıa F, Guijarro L. On three-dimensional Alexandrov spaces. Int Math Res Not IMRN, 2015, (14): 5560–5576

[14]

Galaz-Garćıa F, Searle C. Cohomogeneity one Alexandrov spaces. Transform Groups, 2011, 16(1): 91–107

[15]

Galaz-Garćıa F, Zarei M. Cohomogeneity one topological manifolds revisited. Preprint, 2015, arXiv: 1503.09068

[16]

Grove K. Geometry of, and via, symmetries. In: Conformal, Riemannian and Lagrangian Geometry (Knoxville, TN, 2000). Univ Lecture Ser, Vol 27. Providence: Amer Math Soc, 2002, 31–53

[17]

Grove K. Developments around positive sectional curvature. In: Geometry, Analysis, and Algebraic Geometry: Forty Years of the Journal of Differential Geometry. Surv Differ Geom, Vol 13. Somerville: Int Press, 2009, 117–133

[18]

Grove K, Petersen P. Manifolds near the boundary of existence. J Differential Geom, 1991, 33(2): 379–394

[19]

Grove K, Wilking B. A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. Geom Topol, 2014, 18(5): 3091–3110

[20]

Harvey J, Searle C. Orientation and symmetries of Alexandrov spaces with applications in positive curvature. Preprint, 2013, arXiv: 1209.1366

[21]

Hempel J. 3-manifolds. Providence: AMS Chelsea Publishing, 2004

[22]

Hirsch M W, Smale S. On involutions of the 3-sphere. Amer J Math, 1959, 81: 893–900

[23]

Hoelscher C A. Classification of cohomogeneity one manifolds in low dimensions. Pacific J Math, 2010, 246(1): 129–185

[24]

Hsiang W-Y. Lie transformation groups and differential geometry. In: Differential Geometry and Differential Equations (Shanghai, 1985). Lecture Notes in Math, Vol 1255. Berlin: Springer, 1987, 34–52

[25]

Kapovitch V. Perelman’s stability theorem. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 103–136

[26]

Kobayashi S. Transformation Groups in Differential Geometry. Classics Math. Berlin: Springer-Verlag, 1995

[27]

Kwun K W, Tollefson J L. PL involutions of S1× S1 × S1.Trans Amer Math Soc, 1975, 203: 97–106

[28]

Livesay G R. Involutions with two fixed points on the three-sphere. Ann of Math (2), 1963, 78: 582–593

[29]

Lott J, Villani C. Ricci curvature for metric-measure spaces via optimal transport. Ann of Math (2), 2009, 169(3): 903–991

[30]

Luft E, Sjerve D. Involutions with isolated fixed points on orientable three-dimensional flat space forms. Trans Amer Math Soc, 1984, 285(1): 305–336

[31]

Mitsuishi A, Yamaguchi T. Collapsing three-dimensional closed Alexandrov spaces with a lower curvature bound. Trans Amer Math Soc, 2015, 367(4): 2339–2410

[32]

Mostert P S. On a compact Lie group acting on a manifold. Ann of Math (2), 1957, 65: 447–455; Errata, “On a compact Lie group acting on a manifold”. Ann of Math (2), 1957, 66: 589

[33]

Myers S B, Steenrod N E. The group of isometries of a Riemannian manifold. Ann of Math (2), 1939, 40(2): 400–416

[34]

Neumann W D. 3-Dimensional G-manifolds with 2-dimensional orbits. In: Mostert P S, ed. Proceedings of the Conference on Transformation Groups. Berlin: Springer- Verlag, 1968, 220–222

[35]

Núñez-Zimbrón J. Closed three-dimensional Alexandrov spaces with isometric circle actions. Tohoku Math J (to appear), arXiv: 1312.0540

[36]

Orlik P. Seifert Manifolds. Lecture Notes in Math, Vol 291. Berlin: Springer-Verlag, 1972

[37]

Orlik P, Raymond F. Actions of SO(2) on 3-manifolds. In: Mostert P S, ed. Proceedings of the Conference on Transformation Groups. Berlin: Springer-Verlag, 1968, 297–318

[38]

Otsu Y, Shioya T. The Riemannian structure of Alexandrov spaces. J Differential Geom, 1994, 39(3): 629–658

[39]

Parker J. 4-Dimensional G-manifolds with 3-dimensional orbits. Pacific J Math, 1986, 129(1): 187–204

[40]

Perelman G. Alexandrov spaces with curvatures bounded from below, II. Preprint, 1991

[41]

Perelman G. Elements of Morse theory on Aleksandrov spaces. St Petersburg Math J, 1994, 5: 205–213

[42]

Perel’man G Ya, Petrunin A M. Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz, 1993, 5(1): 242–256 (Russian); St Petersburg Math J, 1994, 5(1): 215–227

[43]

Petrunin A. Applications of quasigeodesics and gradient curves. In: Comparison Geometry (Berkeley, CA, 1993-94). Math Sci Res Inst Publ, Vol 30. Cambridge: Cambridge Univ Press, 1997, 203–219

[44]

Petrunin A. Semiconcave functions in Alexandrov’s geometry. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 137–201

[45]

Plaut C. Metric spaces of curvature _ k. In: Handbook of Geometric Topology. Amsterdam: North-Holland, 2002, 819–898

[46]

Porti J. Geometrization of three manifolds and Perelman’s proof. Rev R Acad Cienc Exactas F´ıs Nat Ser A Mat RACSAM, 2008, 102(1): 101–125

[47]

Raymond F. Classification of the actions of the circle on 3-manifolds. Trans Amer Math Soc, 1968, 131: 51–78

[48]

Scott P. The geometries of 3-manifolds. Bull Lond Math Soc, 1983, 15(5): 401–487

[49]

Shiohama K. An Introduction to the Geometry of Alexandrov Spaces. Lecture Notes Series, 8. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1993

[50]

Shioya T, Yamaguchi T. Collapsing three-manifolds under a lower curvature bound. J Differential Geom, 2000, 56(1): 1–66

[51]

Shioya T, Yamaguchi T. Volume collapsed three-manifolds with a lower curvature bound. Math Ann, 2005, 333(1): 131–155

[52]

Sturm K-T. On the geometry of metric measure spaces. I. Acta Math, 2006, 196(1): 65–131

[53]

Sturm K-T. On the geometry of metric measure spaces. II. Acta Math, 2006, 196(1): 133–177

[54]

Wilking B. Nonnegatively and positively curved manifolds. In: Surv Differ Geom, Vol 11. Somerville: Int Press, 2007, 25–62

[55]

Ziller W. Riemannian manifolds with positive sectional curvature. In: Herrera R, Hernández-Lamoneda L, eds. Geometry of Manifolds with Non-negative Sectional Curvature. Lecture Notes in Math, Vol 2110. Cham: Springer, 2014<Date></Date> 1–19

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (227KB)

718

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/