RESEARCH ARTICLE

Constructing cotorsion pairs over generalized path algebras

  • Haiyan ZHU
Expand
  • College of Science, Zhejiang University of Technology, Hangzhou 310023, China

Received date: 05 Dec 2015

Accepted date: 17 Mar 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

We introduce two adjoint pairs ( e λi, (  )i) and( (  )i,eρi ) and give a new method to construct cotorsion pairs. As applications, we characterize all projective and injective representations of a generalized path algebra and exhibit projective and injective objects of the category Mp which is a generalization of monomorphisms category.

Cite this article

Haiyan ZHU . Constructing cotorsion pairs over generalized path algebras[J]. Frontiers of Mathematics in China, 2016 , 11(4) : 1079 -1096 . DOI: 10.1007/s11464-016-0563-6

1
BazzoniS, EklofP C, TrlifajJ. Tilting cotorsion pairs. Bull Lond Math Soc, 2005, 37(5): 683–696

DOI

2
ChenX. The stable monomorphism category of a Frobenius category. Math Res Lett, 2011, 18(1): 127–139

DOI

3
EnochsE, Estrada S, Garćıa Rozas J R. Injective representations of infinite quivers. Applications. Canad J Math, 2009, 61: 315–335

DOI

4
EnochsE, Estrada S, Garćıa Rozas J R, IacobA . Gorenstein quivers.Arch Math (Basel), 2007, 88: 199–206

DOI

5
EnochsE, Herzog I. A homotopy of quiver morphisms with applications to representations. Canad J Math, 1999, 51(2): 294–308

DOI

6
EnochsE, Jendam O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000

DOI

7
EshraghiH, Hafezi R, HosseiniE , SalarianSh. Cotorsion theory in the category of quiver representations. J Algebra Appl, 2013, 12: 1–16

DOI

8
KrauseH, Solberg O. Applications of cotorsion pairs. J Lond Math Soc, 2003, 68(3): 631–650

DOI

9
LiF. Characterization of left Artinian algebras through pseudo path algebras. J Aust Math Soc, 2007, 83(3): 385–416

DOI

10
LiF. Modulation and natural valued quiver of an algebra. Pacific J Math, 2012, 256(1): 105–128

DOI

11
LiF, LinZ. Approach to Artinian algebras via natural quivers. Trans Amer Math Soc, 2012, 364(3): 1395–1411

DOI

12
LiF, YeC. Gorenstein projective modules over a class of generalized matrix algebras and their applications. Algebr Represent Theory, 2015, 18: 693–710

DOI

13
LuoX H, ZhangP. Monic representations and Gorenstein-projective modules. Pacific J Math, 2013, 264(1): 163–194

DOI

14
MitchellB. Rings with several objects. Adv Math, 1972, 8: 1–161

DOI

15
SalceL. Cotorsion theories for abelian groups. Symposia Mathematica, 1979, 23: 11–32

16
ZhuH, LiF. Quiver approach to some ordered semigroup algebras (submitted)

Outlines

/