Constructing cotorsion pairs over generalized path algebras

Haiyan ZHU

Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 1079 -1096.

PDF (224KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 1079 -1096. DOI: 10.1007/s11464-016-0563-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Constructing cotorsion pairs over generalized path algebras

Author information +
History +
PDF (224KB)

Abstract

We introduce two adjoint pairs ( e λi, (  )i) and( (  )i,eρi ) and give a new method to construct cotorsion pairs. As applications, we characterize all projective and injective representations of a generalized path algebra and exhibit projective and injective objects of the category Mp which is a generalization of monomorphisms category.

Keywords

Cotorsion pair / representation / generalized path algebra

Cite this article

Download citation ▾
Haiyan ZHU. Constructing cotorsion pairs over generalized path algebras. Front. Math. China, 2016, 11(4): 1079-1096 DOI:10.1007/s11464-016-0563-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BazzoniS, EklofP C, TrlifajJ. Tilting cotorsion pairs. Bull Lond Math Soc, 2005, 37(5): 683–696

[2]

ChenX. The stable monomorphism category of a Frobenius category. Math Res Lett, 2011, 18(1): 127–139

[3]

EnochsE, Estrada S, Garćıa Rozas J R. Injective representations of infinite quivers. Applications. Canad J Math, 2009, 61: 315–335

[4]

EnochsE, Estrada S, Garćıa Rozas J R, IacobA . Gorenstein quivers.Arch Math (Basel), 2007, 88: 199–206

[5]

EnochsE, Herzog I. A homotopy of quiver morphisms with applications to representations. Canad J Math, 1999, 51(2): 294–308

[6]

EnochsE, Jendam O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000

[7]

EshraghiH, Hafezi R, HosseiniE , SalarianSh. Cotorsion theory in the category of quiver representations. J Algebra Appl, 2013, 12: 1–16

[8]

KrauseH, Solberg O. Applications of cotorsion pairs. J Lond Math Soc, 2003, 68(3): 631–650

[9]

LiF. Characterization of left Artinian algebras through pseudo path algebras. J Aust Math Soc, 2007, 83(3): 385–416

[10]

LiF. Modulation and natural valued quiver of an algebra. Pacific J Math, 2012, 256(1): 105–128

[11]

LiF, LinZ. Approach to Artinian algebras via natural quivers. Trans Amer Math Soc, 2012, 364(3): 1395–1411

[12]

LiF, YeC. Gorenstein projective modules over a class of generalized matrix algebras and their applications. Algebr Represent Theory, 2015, 18: 693–710

[13]

LuoX H, ZhangP. Monic representations and Gorenstein-projective modules. Pacific J Math, 2013, 264(1): 163–194

[14]

MitchellB. Rings with several objects. Adv Math, 1972, 8: 1–161

[15]

SalceL. Cotorsion theories for abelian groups. Symposia Mathematica, 1979, 23: 11–32

[16]

ZhuH, LiF. Quiver approach to some ordered semigroup algebras (submitted)

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (224KB)

767

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/