Constructing cotorsion pairs over generalized path algebras

Haiyan ZHU

PDF(224 KB)
PDF(224 KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 1079-1096. DOI: 10.1007/s11464-016-0563-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Constructing cotorsion pairs over generalized path algebras

Author information +
History +

Abstract

We introduce two adjoint pairs ( e λi, (  )i) and( (  )i,eρi ) and give a new method to construct cotorsion pairs. As applications, we characterize all projective and injective representations of a generalized path algebra and exhibit projective and injective objects of the category Mp which is a generalization of monomorphisms category.

Keywords

Cotorsion pair / representation / generalized path algebra

Cite this article

Download citation ▾
Haiyan ZHU. Constructing cotorsion pairs over generalized path algebras. Front. Math. China, 2016, 11(4): 1079‒1096 https://doi.org/10.1007/s11464-016-0563-6

References

[1]
BazzoniS, EklofP C, TrlifajJ. Tilting cotorsion pairs. Bull Lond Math Soc, 2005, 37(5): 683–696
CrossRef Google scholar
[2]
ChenX. The stable monomorphism category of a Frobenius category. Math Res Lett, 2011, 18(1): 127–139
CrossRef Google scholar
[3]
EnochsE, Estrada S, Garćıa Rozas J R. Injective representations of infinite quivers. Applications. Canad J Math, 2009, 61: 315–335
CrossRef Google scholar
[4]
EnochsE, Estrada S, Garćıa Rozas J R, IacobA . Gorenstein quivers.Arch Math (Basel), 2007, 88: 199–206
CrossRef Google scholar
[5]
EnochsE, Herzog I. A homotopy of quiver morphisms with applications to representations. Canad J Math, 1999, 51(2): 294–308
CrossRef Google scholar
[6]
EnochsE, Jendam O M G. Relative Homological Algebra. Berlin-New York: Walter de Gruyter, 2000
CrossRef Google scholar
[7]
EshraghiH, Hafezi R, HosseiniE , SalarianSh. Cotorsion theory in the category of quiver representations. J Algebra Appl, 2013, 12: 1–16
CrossRef Google scholar
[8]
KrauseH, Solberg O. Applications of cotorsion pairs. J Lond Math Soc, 2003, 68(3): 631–650
CrossRef Google scholar
[9]
LiF. Characterization of left Artinian algebras through pseudo path algebras. J Aust Math Soc, 2007, 83(3): 385–416
CrossRef Google scholar
[10]
LiF. Modulation and natural valued quiver of an algebra. Pacific J Math, 2012, 256(1): 105–128
CrossRef Google scholar
[11]
LiF, LinZ. Approach to Artinian algebras via natural quivers. Trans Amer Math Soc, 2012, 364(3): 1395–1411
CrossRef Google scholar
[12]
LiF, YeC. Gorenstein projective modules over a class of generalized matrix algebras and their applications. Algebr Represent Theory, 2015, 18: 693–710
CrossRef Google scholar
[13]
LuoX H, ZhangP. Monic representations and Gorenstein-projective modules. Pacific J Math, 2013, 264(1): 163–194
CrossRef Google scholar
[14]
MitchellB. Rings with several objects. Adv Math, 1972, 8: 1–161
CrossRef Google scholar
[15]
SalceL. Cotorsion theories for abelian groups. Symposia Mathematica, 1979, 23: 11–32
[16]
ZhuH, LiF. Quiver approach to some ordered semigroup algebras (submitted)

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(224 KB)

Accesses

Citations

Detail

Sections
Recommended

/