RESEARCH ARTICLE

Koszul property of a class of graded algebras with nonpure resolutions

  • Jiafeng LÜ ,
  • Junling ZHENG
Expand
  • Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

Received date: 21 Jul 2015

Accepted date: 28 Jan 2016

Published date: 30 Aug 2016

Copyright

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg

Abstract

Given any integers a, b, c, and d with a>1, c≥0, ba + c, and db + c, the notion of (a, b, c, d)-Koszul algebra is introduced, which is another class of standard graded algebras with “nonpure” resolutions, and includes many Artin-Schelter regular algebras of low global dimension as specific examples. Some basic properties of (a, b, c, d)-Koszul algebras/modules are given, and several criteria for a standard graded algebra to be (a, b, c, d)- Koszul are provided.

Cite this article

Jiafeng LÜ , Junling ZHENG . Koszul property of a class of graded algebras with nonpure resolutions[J]. Frontiers of Mathematics in China, 2016 , 11(4) : 985 -1002 . DOI: 10.1007/s11464-016-0566-3

1
Artin M, Schelter W F. Graded algebras of global dimension 3. Adv Math, 1987, 66: 171–216

DOI

2
Beilinson A, Ginzburg V, Soergel W. Koszul duality patterns in representation theory. J Amer Math Soc, 1996, 9(2): 473–527

DOI

3
Berger R. Koszulity for nonquadratic algebras. J Algebra, 2001, 239: 705–734

DOI

4
Bian N, Ye Y, Zhang P. Generalized d-Koszul modules. Math Res Lett, 2010, 18(2): 191–200

DOI

5
Brenner S, Butler M C R, King A D. Periodic algebras which are almost Koszul. Algebr Represent Theory, 2002, 5: 331–367

DOI

6
Fløystad G, Vatne J E. Artin-Schelter regular algebras of dimension five. Algebra, Geometry, and Mathematical Physics, Banach Center Publications, 2011, 93: 19–39

DOI

7
Green E L, Marcos E N. δ-Koszul algebras. Comm Algebra, 2005, 33(6): 1753–1764

DOI

8
Green E L, Marcos E N, Mart´ınez-Villa R, Zhang P. D-Koszul algebras. J Pure Appl Algebra, 2004, 193(1): 141–162

DOI

9
Green E L, Snashall N. Finite generation of Ext for a generalization of D-Koszul algebras. J Algebra, 2006, 295: 458–472

DOI

10
Lu D-M, Palmieri J H, Wu Q-S, Zhang J J. Regular algebras of dimension 4 and their A∞-Ext-algebras. Duke Math J, 2007, 137(3): 537–584

DOI

11
Lu D-M, Si J-R. Koszulity of algebras with nonpure resolutions. Comm Algebra, 2009, 38(1): 68–85

DOI

12
Lü J-F. Nonpure piecewise-Koszul algebras. Indian J Pure Appl Math, 2012, 43(1): 1–23

DOI

13
Lü J-F. (a, b, c)-Koszul algebras. Bull Malays Math Sci Soc, 2013, 36(2): 447–463

14
Lü J-F, Chen M-S. Discrete Koszul algebras. Algebr Represent Theory, 2012, 15(2): 273–293

DOI

15
Lü J-F, He J-W, Lu D-M. Piecewise-Koszul algebras. Sci China Ser A, 2007, 50(12): 1795–1804

DOI

16
Priddy S. Koszul resolutions. Trans Amer Math Soc, 1970, 152(1): 39–60

DOI

17
Volodymyr M, Serge O, Catharina S. Quadratic duals, Koszul dual functors, and applications. Trans Amer Math Soc, 2009, 361(3): 1129–1172

18
Zhou G-S, Lu D-M. Artin-Schelter regular algebras of dimension five with two generators. J Pure Appl Algebra, 2014, 218(5): 937–961

DOI

Outlines

/