PDF
(195KB)
Abstract
Given any integers a, b, c, and d with a>1, c≥0, b≥a + c, and d≥b + c, the notion of (a, b, c, d)-Koszul algebra is introduced, which is another class of standard graded algebras with “nonpure” resolutions, and includes many Artin-Schelter regular algebras of low global dimension as specific examples. Some basic properties of (a, b, c, d)-Koszul algebras/modules are given, and several criteria for a standard graded algebra to be (a, b, c, d)- Koszul are provided.
Keywords
Koszul algebras
/
d-Koszul algebras
/
Artin-Schelter regular algebras
/
(abcd)-Koszul algebras
/
Yoneda algebras
Cite this article
Download citation ▾
Jiafeng LÜ, Junling ZHENG.
Koszul property of a class of graded algebras with nonpure resolutions.
Front. Math. China, 2016, 11(4): 985-1002 DOI:10.1007/s11464-016-0566-3
| [1] |
Artin M, Schelter W F. Graded algebras of global dimension 3. Adv Math, 1987, 66: 171–216
|
| [2] |
Beilinson A, Ginzburg V, Soergel W. Koszul duality patterns in representation theory. J Amer Math Soc, 1996, 9(2): 473–527
|
| [3] |
Berger R. Koszulity for nonquadratic algebras. J Algebra, 2001, 239: 705–734
|
| [4] |
Bian N, Ye Y, Zhang P. Generalized d-Koszul modules. Math Res Lett, 2010, 18(2): 191–200
|
| [5] |
Brenner S, Butler M C R, King A D. Periodic algebras which are almost Koszul. Algebr Represent Theory, 2002, 5: 331–367
|
| [6] |
Fløystad G, Vatne J E. Artin-Schelter regular algebras of dimension five. Algebra, Geometry, and Mathematical Physics, Banach Center Publications, 2011, 93: 19–39
|
| [7] |
Green E L, Marcos E N. δ-Koszul algebras. Comm Algebra, 2005, 33(6): 1753–1764
|
| [8] |
Green E L, Marcos E N, Mart´ınez-Villa R, Zhang P. D-Koszul algebras. J Pure Appl Algebra, 2004, 193(1): 141–162
|
| [9] |
Green E L, Snashall N. Finite generation of Ext for a generalization of D-Koszul algebras. J Algebra, 2006, 295: 458–472
|
| [10] |
Lu D-M, Palmieri J H, Wu Q-S, Zhang J J. Regular algebras of dimension 4 and their A∞-Ext-algebras. Duke Math J, 2007, 137(3): 537–584
|
| [11] |
Lu D-M, Si J-R. Koszulity of algebras with nonpure resolutions. Comm Algebra, 2009, 38(1): 68–85
|
| [12] |
Lü J-F. Nonpure piecewise-Koszul algebras. Indian J Pure Appl Math, 2012, 43(1): 1–23
|
| [13] |
Lü J-F. (a, b, c)-Koszul algebras. Bull Malays Math Sci Soc, 2013, 36(2): 447–463
|
| [14] |
Lü J-F, Chen M-S. Discrete Koszul algebras. Algebr Represent Theory, 2012, 15(2): 273–293
|
| [15] |
Lü J-F, He J-W, Lu D-M. Piecewise-Koszul algebras. Sci China Ser A, 2007, 50(12): 1795–1804
|
| [16] |
Priddy S. Koszul resolutions. Trans Amer Math Soc, 1970, 152(1): 39–60
|
| [17] |
Volodymyr M, Serge O, Catharina S. Quadratic duals, Koszul dual functors, and applications. Trans Amer Math Soc, 2009, 361(3): 1129–1172
|
| [18] |
Zhou G-S, Lu D-M. Artin-Schelter regular algebras of dimension five with two generators. J Pure Appl Algebra, 2014, 218(5): 937–961
|
RIGHTS & PERMISSIONS
Higher Education Press and Springer-Verlag Berlin Heidelberg