Koszul property of a class of graded algebras with nonpure resolutions

Jiafeng LÜ , Junling ZHENG

Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 985 -1002.

PDF (195KB)
Front. Math. China ›› 2016, Vol. 11 ›› Issue (4) : 985 -1002. DOI: 10.1007/s11464-016-0566-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Koszul property of a class of graded algebras with nonpure resolutions

Author information +
History +
PDF (195KB)

Abstract

Given any integers a, b, c, and d with a>1, c≥0, ba + c, and db + c, the notion of (a, b, c, d)-Koszul algebra is introduced, which is another class of standard graded algebras with “nonpure” resolutions, and includes many Artin-Schelter regular algebras of low global dimension as specific examples. Some basic properties of (a, b, c, d)-Koszul algebras/modules are given, and several criteria for a standard graded algebra to be (a, b, c, d)- Koszul are provided.

Keywords

Koszul algebras / d-Koszul algebras / Artin-Schelter regular algebras / (abcd)-Koszul algebras / Yoneda algebras

Cite this article

Download citation ▾
Jiafeng LÜ, Junling ZHENG. Koszul property of a class of graded algebras with nonpure resolutions. Front. Math. China, 2016, 11(4): 985-1002 DOI:10.1007/s11464-016-0566-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Artin M, Schelter W F. Graded algebras of global dimension 3. Adv Math, 1987, 66: 171–216

[2]

Beilinson A, Ginzburg V, Soergel W. Koszul duality patterns in representation theory. J Amer Math Soc, 1996, 9(2): 473–527

[3]

Berger R. Koszulity for nonquadratic algebras. J Algebra, 2001, 239: 705–734

[4]

Bian N, Ye Y, Zhang P. Generalized d-Koszul modules. Math Res Lett, 2010, 18(2): 191–200

[5]

Brenner S, Butler M C R, King A D. Periodic algebras which are almost Koszul. Algebr Represent Theory, 2002, 5: 331–367

[6]

Fløystad G, Vatne J E. Artin-Schelter regular algebras of dimension five. Algebra, Geometry, and Mathematical Physics, Banach Center Publications, 2011, 93: 19–39

[7]

Green E L, Marcos E N. δ-Koszul algebras. Comm Algebra, 2005, 33(6): 1753–1764

[8]

Green E L, Marcos E N, Mart´ınez-Villa R, Zhang P. D-Koszul algebras. J Pure Appl Algebra, 2004, 193(1): 141–162

[9]

Green E L, Snashall N. Finite generation of Ext for a generalization of D-Koszul algebras. J Algebra, 2006, 295: 458–472

[10]

Lu D-M, Palmieri J H, Wu Q-S, Zhang J J. Regular algebras of dimension 4 and their A∞-Ext-algebras. Duke Math J, 2007, 137(3): 537–584

[11]

Lu D-M, Si J-R. Koszulity of algebras with nonpure resolutions. Comm Algebra, 2009, 38(1): 68–85

[12]

J-F. Nonpure piecewise-Koszul algebras. Indian J Pure Appl Math, 2012, 43(1): 1–23

[13]

J-F. (a, b, c)-Koszul algebras. Bull Malays Math Sci Soc, 2013, 36(2): 447–463

[14]

J-F, Chen M-S. Discrete Koszul algebras. Algebr Represent Theory, 2012, 15(2): 273–293

[15]

J-F, He J-W, Lu D-M. Piecewise-Koszul algebras. Sci China Ser A, 2007, 50(12): 1795–1804

[16]

Priddy S. Koszul resolutions. Trans Amer Math Soc, 1970, 152(1): 39–60

[17]

Volodymyr M, Serge O, Catharina S. Quadratic duals, Koszul dual functors, and applications. Trans Amer Math Soc, 2009, 361(3): 1129–1172

[18]

Zhou G-S, Lu D-M. Artin-Schelter regular algebras of dimension five with two generators. J Pure Appl Algebra, 2014, 218(5): 937–961

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (195KB)

719

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/