Frontiers of Mathematics in China >
Lie super-bialgebra structures on super-Virasoro algebra
Received date: 29 Aug 2008
Accepted date: 30 Nov 2008
Published date: 05 Jun 2009
Copyright
In this paper we obtain that every super-Virasoro algebra admits only triangular coboundary Lie super-bialgebra structures and this is proved mainly based on the computation of derivations from the super- Virasoro algebra to the tensor product of its adjoint module.
Hengyun YANG . Lie super-bialgebra structures on super-Virasoro algebra[J]. Frontiers of Mathematics in China, 2009 , 4(2) : 365 -379 . DOI: 10.1007/s11464-009-0012-x
1 |
Drinfeld V G. Hamiltonian structures on Lie groups, Lie bialgebras and the geometric meaning of classical Yang-Baxter equations. Dokl Akad Nauk SSSR, 1983, 268: 285-287 (Russian)
|
2 |
Drinfeld V G. Quantum groups. In: Proceeding of the International Congress of Mathematicians, Vol 1, 2, Berkeley, Calif, 1986. Providence: Amer Math Soc, 1987, 798-820
|
3 |
Michaelis W. A class of infinite-dimensional Lie bialgebras containing the Virasoro algebras. Adv Math, 1994, 107: 365-392
|
4 |
Ng S H, Taft E J. Classification of the Lie bialgebra structures on the Witt and Virasoro algebras. J Pure Appl Algebra, 2000, 151: 67-88
|
5 |
Nichols W D. The structure of the dual Lie coalgebra of the Witt algebra. J Pure Appl Algebra, 1990, 68: 359-364
|
6 |
Su Y C. Harish-Chandra modules of the intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras. J Math Phys, 1994, 35: 2013-2023
|
7 |
Su Y C. Classification of Harish-Chandra modules over the super-Virasoro algebras. Commun Algebra, 1995, 23: 3653-3675
|
8 |
Taft E J. Witt and Virasoro algebras as Lie bialgebras. J Pure Appl Algebra, 1993, 87: 301-312
|
9 |
Wu Y Z, Song G A, Su Y C. Lie bialgebras of generalized Virasoro-like type. Acta Math Sinica (English Ser), 2006, 22(6): 1915-1922
|
10 |
Wu Y Z, Song G A, Su Y C. Lie bialgebras of generalized Witt type. II. Comm Algebra, 2007, 35(6): 1992-2007
|
/
〈 |
|
〉 |